SIP Express Router v0.8.8 - Developer’s Guide

Jan Janak
Jiri Kuthan

Bogdan lancu

SIP Express Router v0.8.8 - Developer’s Guide
by Jan Janak, Jiri Kuthan, and Bogdan Iancu

Copyright © 2001, 2002 by FhG Fokus

The document describes the SIP Express Router internals and algorithms. It describes overall
server architecture, request processing, configuration, memory management, interprocess
locking, module interface and selected modules in detail.

The document is intended mainly for module developers wishing to implement a new mod-
ule for the server. Other people like developers of SIP related software or students might be
interested too.

This documentation is free software; you can redistribute it and /or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of SER.

Table of Contents

1. The Server Startup 1
Installation Of New Signal Handlerscccccoovviiiiiiiiiiiicni 1
Processing Command Line Parameterscccocooviiiinninieneeiinne 1
Parser INTtaliZation ...c.oovieceiieeeeee ettt ettt ere e enees 1
Malloc TNIHATIZAION «..eeieeeeeeeeeeeeeeeee et e e e et eeaeeas 1
B 50 T<Y o Da VL =Y 122X s (o) o WU 1
FIFO INItAliZAtiOn ...veeovveeeiieeeeeeeeee ettt et eeae e neeennes 1
Built-in Module INitialiZationc.eeoeeuiieiiiiiiieeeeee e 2
Server CONfiGUIationccocviiiiiiiiiiniiiii e 2

Lexical ANaLYSiscccciiimiiiiiiiiiiiiiecceee s 2
Syntactical ANalysis..........cocooeuiiiiiiieiiiic 2
Conlfig File Structureccocovviiiiiiiniiicn, 3
Interface Configurationococeveiiriiniiicc e 5
Turning into @ Da@mON.........cccciiiiii 5
JAY/ (Yo K81 (S Fa WA aF=1 121 5 To) o WS 6
Routing List FIXING.......cccoeiiiiiiieiieiieicecee e 6
Statistics INTHAZATIONcoocueiieeiieceee ettt e 6
[0 Ye) =i B Fa VL t=Y V22X s (o) o WO 6
FOTKING ..o 6
dont_fork variable is set (NOt ZET0).......ccceruirierieieirireeee e 7
dont_fork 1S NOt SEt (ZET0)...cueevvereieieieeieteeeeere e 7

2. Main Loop 9
receive_msg FUNCHON ...ooueiiiiiiiiiiit e 9

3. The Server Shutdown 11

4. Internal Data Structures 13
TYPE ST oo 13
SHUCEUTE AT _f1ELA ..ttt e s e s e 13
StruCture SIP_UTi ..oveveeiiicicicccc e 14
Structure via_body ... 14
Structure Ip_addroooiiiiii s 15
SHrUCtUTe IUMP .o 15
Structure IUmMpP_1pl....c 16
Structure MSg_Start.........cccccviviiiiiiiiiii 16
Structure SIP_MSG....ccoviviveiiiiiietci e 16

5. The Routing Engine 21
do_action FUNCHOMN. ...coouiiiiiiiiiteieeeeee ettt et 21

6. The Message Parser 25
Structure of @ SIP MeSSaZE.......cceueuemiurureririiririreiieccieeeiee e 25
The Parser Organization ... 25

The First LiNe ParSer ...ccceeioveiiiiiieeeeieeeeeeeeeeee et 25
The Header Field Name Parsercoovveveeeeeeiceeeeeeeeeeeeeeeeeee e 26
The Header Field Body Parsers ..o 28

7. The Module Interface 39
SHUCHUTE ST_INOAULE ..ottt e et eeeaeesereeeseneeseane 39
Structure module_eXports..........ccccoviiviiiiiiiiin 39
Module Loadingcoeueviiiriiicicic 42
Module CONfiguration..........c.cccoceueueuiirirririirennceccceeee s 43

Function modparamcccooeeeriiiinenieeeeee et 43
Function set_mod_paramccoeceeviernienieniiiniieeenie et 43
Function find_param_eXport cccceercieeecieeeee e 43
Finding an Exported FUNCHONccccoviiiiiiiiiiiiiicccc 44
Additional FUNCHONSvviiiiieeeeeeceeeeeeeeee et eae s e e 44

iii

v

8. The Database Interface 45

Data tyPeS....cciiiciciiicc e 45
Type db_COn_t ..o 45
TYPE AD_KEY _t e 45
Type db_type_t...ccooiiiiiiiiic 45
Type db_val _t...i 45
TYPe db_TOW_t .o 48
TYPe db_1€5_t ..o 48

FUNCHONS ..o 49
o] TaTo o o140 To o I USSP 50
A0 INIE oo s s e s s eeeeee 50
D _CIOSE ettt et 50
(oo T o 0= oY USSP 50
OD_frEE_QUETNY ettt sttt s 51
D INSEIT ottt ettt s 51
(oo T =111 USSR 52
OD_UPALIE .ttt sttt sttt st ettt e ne et 52
Ab_USE_1ADIE e e 52

9. Basic Modules 55

Digest Authentication.........cocouicuiieiiiiiiicc 55
Exported Parameters..........c.cccoeeveiiiininininiiiiiiccceeee s 55
Exported FUNCHONScoviiiiiiicc e 56

Max FOrwards ... 58
Exported Parameters..........cccooeeeiiiiiinininiiniiicccceee s 58
Exported FUNCHONScooviriiiiic e 58

ReGISTIAT.....coiii s 59
Exported Parameters..........c.cccoeeveiiiiiiiininiiiiccceee s 59
Exported FUNCHONSc.oviriiiciiccc e 59

Record-ROUHNG. ..ot 60
Exported Parameters...........cccccocviviiiinininiiiiinccccc 60
Exported FUNCHONSc.cccoeuiiiiiiiiriiiiiiicccccccccceeas 60

Stateless Replies..........cccuouiiuriiiiiieic 61
Exported Parameters...........ccccovviiiiinininiiiiiiccnccc 61
Exported FUNCHONSc.ccceuiiiiiiiiriiiiiiiiccccccaes 61

Transaction Module ... 61
External Usage of TM......cccccccuiuiiniinrrieccccciceeeeneneneeese e 62
Exported Parameters...........ccccccuvuviviiiiinininiiniiicccccccceeeeeeeas 63
Exported FUNCHONS ... 64
KNOWN ISSUES ...cooviiiiiiiiiic s 66

User Location Module ...t 67
Exported Parameters..........cooceuoiiuiiiiiciiiiiicce 67
Exported FUNCHONScccoviiiiiiiiiiiiic 69

Chapter 1. The Server Startup

The main function in file main.c is the first function called upon server startup.
It’s purpose is to initialize the server and enter main loop. The server initialization
will be described in the following sections.

Particular initialization steps are described in order in which they appear in main
function.

Installation Of New Signal Handlers

The first step in the initialization process is the installation of new signal han-
dlers. We need our own signal handlers to be able to do gracefull shutdown,
print server statistics and so on. There is only one signal handler function which
is function sig_usr in file main.c .

The following signals are handled by the function: SIGINT, SIGPIPE, SIGUSR1,
SIGCHLD, SIGTERM, SIGHUP and SIGUSR2.

Processing Command Line Parameters

SER utilizes the getopt function to parse command line parameters. The func-
tion is extensively described in the man pages.

Parser Initialization

SER contains a fast 32-bit parser. The parser uses precalculated hash table that
needs to be filled in upon startup. The initialization is done here, there are two
functions that do the job. Function init_hfname_parser initializes hash table
in header field name parser and function init_digest_parser initializes hash
table in digest authentication parser. The parser’s internals will be described later.

Malloc Initialization

To make SER even faster we decided to reimplement memory allocation routines.
The new malloc better fits our needs and speeds up the server a lot. The memory
management subsystem needs to be initialized upon server startup. The initial-
ization mainly creates internal data structures and allocates memory region to be
partitioned.

Important: The memory allocation code must be initialized BEFORE any of its func-
tion is called !

Timer Initialization

Various subsystems of the server must be called periodically regardless of the
incoming requests. That’s what timer is for. Function init_timer initializes the
timer subsystem. The function is called from main.c and can be found in timer.c
The timer subsystem will be described later.

Warning

Timer subsystem must be initialized before config file is parsed !

Chapter 1. The Server Startup

FIFO Initialization

SER has built-in support for FIFO control. It means that the running server
can accept commands over a fifo special file (a named pipe). Function
register_core_fifo initializes FIFO subsystem and registers basic commands,
that are processed by the core itself. The function can be found in file
fifo_server.c

The FIFO server will be described in another chapter.

Built-in Module Initialization

Modules can be either loaded dynamically at runtime or compiled in statically.
When a module is loaded at runtime, it is registered ' immediatelly with the core.
When the module is compiled in statically, the registration' must be performed
during the server startup. Function register_buildin_modules does the job.

Server Configuration

The server is configured through a configuration file. The configuration file is C-
Shell like script which defines how incoming requests should be processed. The
file cannot be interpreted directly because that would be very slow. Instead of
that the file is translated into an internal binary representation. The process is
called compilation and will be described in the following sections.

Note: The following sections only describe how the internal binary representation is
being constructed from the config file. The way how the binary representation is used
upon a request arrival will be described later.

The compilation can be divided in several steps:

Lexical Analysis

Lexical analysis is process of converting the input (the configuration file in this
case) into a stream of tokens. A token is a set of characters that ‘belong’ together.
A program that can turn the input into stream of tokens is called scanner. For
example, when scanner encounters a number in the config file, it will produce
token NUMBER.

There is no need to implement the scanner from scratch, it can be done automat-
ically. There is a utility called flex. Flex accepts a configuration file and generates
scanner according to the configuration file. The configuration file for flex consists
of several lines - each line describing one token. The tokens are described using
regular expressions. For more details, see flex manual page or info documenta-
tion.

Flex input file for the SER config file is in file cfg.lex . The file is processed by
flex when the server is being compiled and the result is written in file lex.yy.c
The output file contains the scanner implemented in the C language.

Syntactical Analysis

The second stage of configuration file processing is called syntactical analysis.
Purpose of syntactical analysis is to check if the configuration file has been well
formed, doesn’t contain syntactical errors and perform various actions at various
stages of the analysis. Program performing syntactical analysis is called parser.

Structure of the configuration file is described using grammar. Grammar is a set
of rules describing valid ‘order” or ‘combination’ of tokens. If the file isn’t con-
formable with it’s grammar, it is syntactically invalid and cannot be further pro-
cessed. In that case an error will be issued and the server will be aborted.

Chapter 1. The Server Startup

There is a utility called yacc. Input of the utility is a file containing the grammar
of the configuration file, in addition to the grammar, you can describe what action
the parser should do at various stages of parsing. For example, you can instruct
the parser to create a structure describing an IP address every time it finds an IP
address in the configuration file and convert the address to its binary representa-
tion.

For more information see yacc documentation.

yacc creates the parser when the server is being compiled from the sources. Input
file for yacc is cfg.y . The file contains grammar of the config file along with ac-
tions that create the binary representation of the file. Yacc will write its result into
file cfg.tab.c . The file contains function yyparse which will parse the whole
configuration file and construct the binary representation. For more information
about the bison input file syntax see bison documentation.

Config File Structure

The configuration file consist of three sections, each of the sections will be de-
scribed separately.

» Route Statement - The statement describes how incoming requests will be pro-
cessed. When a request is received, commands in one or more “route” sections
will be executed step by step. The config file must always contain one main
“route” statement and may contain several additional “route” statements. Re-
quest processing always starts at the beginning of the main “route” statement.
Additional “route” statements can be called from the main one or another ad-
ditional “route” statements (It it simmilar to function calling).

» Assign Statement - There are many configuration variables across the server
and this statement makes it possible to change their value. Generally it is a list
of assignments, each assignment on a separate line.

e Module Statement - Additional funcionality of the server is available through
separate modules. Each module is a shared object that can be loaded at run-
time. Modules can export functions, that can be called from the configuration
file and variables, that can be configured from the config file. The module state-
ment makes it possible to load modules and configure them. There are two
commands in the statement - loadmodule and modparam. The first can load a
module. The second one can configure module’s internal variables.

In the following sections we will describe in detail how the three sections are
being processed upon server startup.

Route Statement

The following grammar snippet describes how the route statement is constructed
route_stm = "route" "{" actions "}"
$$ = push($3, &rlistDEFAULT_RT));
actions = actions action { $$ = append_action($1, $2}; }
| action { $$ = $1; }

action = cmd SEMICOLON { $$ = $1; }
| SEMICOLON { $$ = 0; }

cmd = “"forward" "(" host ")" { $$ = mk_action(FORWARD_T, STRING_ST, NUM-
BER_ST, $3, 0)
[..

A config file can contain one or more "route" statements. "route" statement with-
out number will be executed first and is called the main route statement. There
can be additional route statements identified by number, these additional route

3

Chapter 1. The Server Startup

statements can be called from the main route statement or another additional
route statements.

Each route statement consists of a set of actions. Actions in the route statement
are executed step by step in the same order in which they appear in the config
file. Actions in the route statement are delimited by semicolon.

Each action consists of one and only one command (cmd in the grammar). There
are many types of commands defined. We don't list all of them here because the
list would be too long and all the commands are processed in the same way.
Therefore we show only one example (forward) and interested readers might
look in cfg.y file for full list of available commands.

Each rule in the grammar contains a section enclosed in curly braces. The section
is the C code snippet that will be executed every time the parser recognizes that
rule in the config file.

For example, when the parser finds forward command, mk_action function (as
specified in the grammar snippet above) will be called. The function creates a
new structure with type field set to FORWARD_T representing the command.
Pointer to the structure will be returned as the return value of the rule.

The pointer propagates through action rule to actions rule. Actions rule will
create linked list of all commands. The linked list will be then inserted into rlist
table. (Function push inrule route_stm). Each element of the table represents one
“route” statement of the config file.

Each route statement of the configuration file will be represented by a linked list
of all actions in the statement. Pointers to all the lists will be stored in rlist array.
Additional route statements are identified by number. The number also serves as
index to the array.

When the core is about to execute route statement with number n, it will look in
the array at position n. If the element at position n is not null then there is a linked
list of commands and the commands will be executed step by step.

Reply-Route statement is compiled in the same way. Main differences are:

* Reply-Route statement is executed when a SIP REPLY comes (not ,SIP RE-
QUEST).

e Only subset of commands is allowed in the reply-route statement. (See file
cfg.y for more details).

 Reply-route statement has it’s own array of linked-lists.

Assign Statement

The server contains many configuration variables. There is a section of the config
file in which the variables can be assigned new value. The section is called The
Assign Statement. The following grammar snippet describes how the section is
constructed (only one example will be shown):

assign_stm = "children" '=> NUMBER { children_no=$3; }
| "children" '=" error { yyerror("number expected"); }

The number in the config file is assigned to children_no variable. The second
statement will be executed if the parameter is not number or is in invalid format
and will issue an error and abort the server.

Module Statement

The module statement allows module loading and configuration. There are two
commands:

Chapter 1. The Server Startup

* loadmodule - Load the specified module in form of a shared object. The shared
object will be loaded using dlopen .

» modparam - It is possible to configure a module using this command. The com-
mand accepts 3 parameters: module name, variable name and variable value.

The following grammar snippet describes the module statement:
module_stm = "loadmodule" STRING

DBG("loading module %s\n", $2);
if (load_module($2)!=0) {
yyerror(“failed to load module");

| "loadmodule" error { yyerror("string expected"); }
| "modparam” "(" STRING ", STRING "" STRING ")"

if (set_mod_param($3, $5, STR_PARAM, $7) != 0) {
yyerror("Can’'t set module parameter");
}
}

| "modparam” "(" STRING ", STRING "," NUMBER ")"

if (set_mod_param($3, $5, INT_PARAM, (void*)$7) != 0) {
yyerror("Can’'t set module parameter");

| MODPARAM error { yyerror("Invalid arguments"); }

When the parser finds loadmodule command, it will execute statement in curly
braces. The statement will call load_module function. The function will load the
specified filename using dlopen . If dlopen was successfull, the server will look
for exports structure describing the module’s interface and register the module.
For more details see module section.

If the parser finds modparam command, it will try to configure the specified vari-
able in the specified module. The module must be loaded using loadmodule be-
fore modparam for the module can be used ! Function set_mod_param will be
called and will configure the variable in the specified module.

Interface Configuration

The server will try to obtain list of all configured interfaces of the host it is run-
ning on. If it fails the server tries to convert hostname to IP address and will use
interface with the IP address only.

Function add_interfaces ~ will add all configured interfaces to the array.

Try to convert all interface names to IP addresses, remove duplicates...

Turning into a Daemon

When configured so, SER becomes a daemon during startup. A process is called
daemon when it hasn’t associated controlling terminal. See function daemonize
in file main.c for more details. The function does the following:

« chroot is performed if neccessary. That ensures that the server will have access
to a particular directory and its subdirectories only.

 Server’s working directory is changed if the new working directory was spec-
ified (usually it is /).

 If command line parameter -g was used, the server’s group ID is changed to
that value.

Chapter 1. The Server Startup

Module

 If command line parameter -u was used, the server’s user ID is changed to that
value.

» Perform fork, let the parent process exit. This ensures that we are not a group
leader.

 Perform setsid to become a session leader and drop the controlling terminal.

 Fork again to drop group leadership.

Create a pid file.

Close all opened file descriptors.

Initialization

The whole config file was parsed, all modules were loaded already and can be ini-
tialized now. A module can tell the core that it needs to be initialized by exporting
mod_init function. mod_init function of all loaded modules will be called now.

Routing List Fixing

After the whole routing list was parsed, there might be still places that can be
further processed to speed-up the server. For example, several commands accept
regular expression as one of their parameters. The regular expression can be com-
piled too and processing of compiled expression will be much faster.

Another example might be string as parameter of a function. For example if you
call append_hf("Server: SIP Express Router\r\n") from the routing script,
the function will append a new header field after the last one. In this case, the
function needs to know length of the string parameter. It could call strlen every
time it is called, but that is not a very good idea because strlen would be called
every time a message is processed and that is not neccessary.

Instead of that the length of the string parameter could be precalculated upon
server startup, saved and reused later. The processing of the request will be faster
because append_hf doesn’t need to call stlen every time, I can just reuse the
saved value.

This can be used also for string to int conversions, hostname lookups, expression
evaluation and so on.

This process is called Routing List Fixing and will be done as one of last steps of
the server startup.

Every loaded module can export one or more functions. Each such function can
have associated a fixup function, which should do fixing as described in this sec-
tion. All such fixups of all loaded modules will be called here. That makes it
possible for module functions to fix their parameters too if necessary.

Statistics Initialization

If compiled-in, the core can produce some statistics about itself and traffic pro-
cessed. The statistics subsystem gets initialized here, see function init_stats

Socket Initialization

UDP socket initialization depends on dont_fork variable. If this variable is set
(only one process will be processing incoming requests) and there are multiple
listen interfaces, only the first one will be used. This mode is mainly for debug-

ging.
If the variable is not set, then sockets for all configured interfaces will be created
and initialized. See function udp_init in file udp_server.c for more details.

Chapter 1. The Server Startup

Forking

The rest of the initialization process depends on value of dont_fork variable.
dont_fork is a global variable defined in main.c . We will describe both variants
separatelly.

dont_fork variable is set (not zero)

If dont_fork variable is set, the server will be operating in special mode. There
will be only one process processing incoming requests. This is very slow and was
intended mainly for debugging purposes. The main process will be proccessing
all incoming requests itself.

The server still needs additional children:

 One child is for the timer subsystem, the child will be processing timers inde-
pendently of the main process.

 FIFO server will spawn another child if enabled. The child will be processing
all commands comming through the fifo interface.

« If SNMP support was enabled, another child will be created.

The following initialization will be performed in dont fork mode. (look into func-
tion main_loop in file main.c .

 Another child will be forked for the timer subsystem.

« Initialize the FIFO server if enabled, this will fork another child. For more info
about the FIFO server, see section The FIFO server.

« Call init_child(0). The function performs per-child specific initialization
of all loaded modules. A module can be initialized though mod_init ~ function.
The function is called BEFORE the server forks and thus is common for all
children.

If there is anything, that needs to be initialized in every child separately (for
example if each child needs to open its own filedescriptor), it cannot be done in
mod_init . To make such initialization possible, a module can export another
initialization function called init_child . The function will be called in all chil-
dren AFTER fork of the server.

And since we are in “dont fork” mode and there will no children process-
ing requests (remember the main process will be processing all requests), the
init_child wouldn't be called.

That would be bad, because child_init might do some initialization that
must be done otherwise modules might not work properly.

To make sure that module initialization is complete we will call init_child
here for the main process even if we are not going to fork.

That’s it. Everything has been initialized properly and as the last step we will call
udp_rcv_loop which is the main loop function. The function will be described
later.

dont_fork is not set (zero)

dont_fork is not set. That means that the server will fork children and the chil-
dren will be processing incoming requests. How many childrens will be cre-
ated depends on the configuration (children variable). The main process will
be sleeping and handling signals only.

The main process will then initialize the FIFO server. The FIFO server needs an-
other child to handle communication over FIFO and thus another child will be
created. The FIFO server will be described in more detail later.

Chapter 1. The Server Startup

Notes

Then the main process will perform another fork for the timer attendand. The
child will take care of timer lists and execute specified function when a timer
hits.

The main process is now completely initialized, it will sleep in pause function
untill a signal comes and call handle_sigs ~ when such condition occurs.

The following initialization will be performed by each child separately:

Each child executes init_child function. The function will sequentially call
child_init functions of all loaded modules.

Becuase the function is called in each child separately, it can initialize per-child
specific data. For example if a module needs to communicate with database, it
must open a database connection. If the connection would be opened in mod_init
function, all the children would share the same connection and locking would be
neccessary to avoid conflicts. On the other hand if the connection was opened in
child_init function, each child will have its own connection and concurrency
conflicts will be handled by the database server.

And last, but not least, each child executes udp_rcv_loop function which con-
tains the main loop logic.

1. Module registration is a process when the core tries to find what functions
and parameters are offered by the module.

Chapter 2. Main Loop

Upon startup, all children execute recvfrom function. The process will enter the
kernel mode. When there is no data to be processed at the moment, the kernel
will put the process on list of processes waiting for data and the process will be
put asleep.

When data to be processed was received, the first process on the list will be re-
moved from the list and woken up. After the process finished processing of the
data, it will call recvfrom again and will be put by the kernel at the end of the
list.

When next data arrives, the first process on the list will be removed, processes
the data and will be put on the end of the list again. And so on...

The main loop logic can be found in function udp_rcv_loop in file
udp_server.c

The message is received using recvfrom function. The received data is stored in
buffer and zero terminated.

If configured so, basic sanity checks over the received message will be performed.

The message is then processed by receive_msg function and recvfrom is called
again.

receive_msg Function

The function can be found in receive.c file.

 In the server, a request or response is represented by sip_msg structure. The
structure is allocated in this function. The original message is stored in buf
attribute of the structure and is zero terminated. Then, another copy of the
received message will be created and the copy will be stored in orig field. The
original copy will be not modified during the server operation. All changes
will be made to the copy in buf field. The second copy of the message will be
removed in the future.

» The message will be parsed (function parse_msg). We don’t need the whole
message header to be parsed at this stage. Only the first line and first Via header
need to be parsed. The server needs to know if the message is request or re-
sponse - hence the first line. The server also needs the first Via to be able to add
its own Via - hence the first Via. Nothing else will be parsed at the moment -
this saves time. (Message parser as well as sip_msg structure will be described
later).

* A module may register callbacks. Each callback have associated an event, that
will trigger the callback. One such callback is pre-script callback. Such callback
will be called immediatelly before the routing part of the config file will be
executed. If there are such callbacks registered, they will be executed now.

» As the next step we will determine type of the message. If the message be-
ing processed is a REQUEST then basic sanity checks will be performed (make
sure that there is the first Via and parsing was successfull) and the message
will be passed to routing engine. The routing engine is one of the most compli-
cated parts of the server and will be in detail described in chapter The Routing
Engine.

« If the message is a RESPONSE, it will be simply forwarded to its destination.

» After all, post-script callbacks will be executed if any and the structure repre-
senting the message will be released.

» Processing of the message is done now and the process is ready for another
SIP message.

Chapter 2. Main Loop

10

Chapter 3. The Server Shutdown

The server shutdown can be triggered by sending a signal to the server. The
server will behave differently upon receiving various types of signals, here is
a brief summary:

e SIGINT, SIGPIPE, SIGTERM, SIGCHLD will terminate the server.
» SIGUSR1 will print statistics and let the server continue.
» SIGHUP, SIGUSR2 will be ignored.

There is only one common signal handler for all signals - function sig_usr in file
main.c .

In normal mode of operation (dont_fork variable is not set), the main server is
not processing any requests, it calls pause function and will be waiting for signals
only. What happens when a signal arrives is shown in the previous paragraph.

When in normal mode (dont_fork is not set), the signal handler of the main pro-
cess will only store number of the signal received. All the processing logic will be
executed by the main process outside the signal handler (function handle_sigs)
The function will be called immediately after the signal handler finish. The main
process usually does some cleanup and running such things outside the signal
handler is much more safe than doing it from the handler itself. Children only
print statistics and exit or ignore the signal completely, that is quite safe and can
be done directly from the signal handler of children.

When dont_fork is set, all the cleanup will be done directly from the signal han-
dler, because there is only one process - the main process. This is not so safe as
the previous case, but this mode should be used for debugging only and such
shortcomming doesn’t harm in that case.

Upon receipt of SIGINT, SIGPIPE or SIGTERM destroy_modules ~ will be called.
Each module may register so-called destroy function if it needs to do some
cleanup when the server is terminating (flush of cache to disk for example). de-
stroy_modules ~ will call destroy funtion of all loaded modules.

If you need to terminate the server and all of its children, the best way how to do
it is to send SIGTERM to the main process, the main process will in turn send the
same signal to its children.

The main process and its children are in the same process group. Therefore the
main process can kill all its children simply by sending a signal to pid 0, sending
to pid 0 will send the signal to all processes in the same process group as the
sending process. This is how the main process will terminate all children when it
is going to shut down.

If one child exited during normal operation, the whole server will be shut down.
This is better than let the server continue - a dead child might hold a lock and that
could block the whole server, such situation cannot be avoided easily. Instead of
that it is better to shutdown the whole server and let it restart.

11

Chapter 3. The Server Shutdown

12

Chapter 4. Internal Data Structures

There are some data structures that are important and widely used in the server.
We will describe them in detail in this section.

Note: There are many more structures and types defined across the server and mod-
ules. We will describe only the most important and common data structure here. The
rest will be described in other sections if needed.

Type str

One of our main goals was to make SER really fast. There are many functions
across the server that need to work with strings. Usually these functions need
to know string length. We wanted to avoid using of strlen becase the function
is relatively slow. It must scan the whole string and find the first occurence of
zero character. To avoid this, we created str type. The type has 2 fields, field s
is pointer to the beginning of the string and field len is length of the string. We
then calculate length of the string only once and later reuse saved value.

Important: str structure is quite important because it is widely used in SER (most
functions accept str instead of char*).

str Type Declaration
struct _str{

char* s;

int len;

2
typedef struct _str str;

The declaration can be found in header file str.h

Warning

Because we store string lengths, there is no need to zero terminate
them. Some strings in the server are still zero terminated, some are
not. Be carefull when using functions like snprintf that rely on the
ending zero. You can print variable of type str this way:

printf("%.*s", mystring->len, mystring->s);

That ensures that the string will be printed correctly even if there is
no zero character at the end.

Structure hdr_field

The structure represents a header field of a SIP message. A header field consist
of name and body separated by a double colon. For example: “Server: SIP Express
Router\r\n” is one header field. “Server” is header field name and “SIP Express
Router\r\n” is header field body.

The structure is defined in file hfh under parser subdirectory.

Structure Declaration

struct hdr_field {

int type; /* Header field type */

str name; /* Header field name */
str body; [* Header field body */
void* parsed; /* Parsed data structures */

struct hdr_field* next; /* Next header field in the list */

13

Chapter 4. Internal Data Structures

k

Field Description:

» type - Type of the header field, the following header field types are defined

(and recognized by the parser):

HDR_VIAI, HDR_VIA2, HDR_TO, HDR_FROM, HDR_CSEQ,
HDR_CALLID, HDR_CONTACT, HDR_MAXFORWARDS, HDR_ROUTE,
HDR_RECORDROUTE, HDR_CONTENTTYPE, HDR_CONTENTLENGTH,

HDR_AUTHORIZATION, HDR_EXPIRES, HDR_PROXYAUTH,
HDR_WWWAUTH, HDR_SUPPORTED, HDR_REQUIRE,
HDR_PROXYREQUIRE, HDR_UNSUPPORTED, HDR_ALLOW,

HDR_EVENT, HDR_OTHER.

Their meaning is selfexplanatory. HDR_OTHER marks header field not recog-
nized by the parser.

name - Name of the header field (the part before colon)
body - body of the header field (the part after colon)

parsed - Each header field body can be further parsed. The field contains
pointer to parsed structure if the header field was parsed already. The pointer
is of type void* because it can point to different types of structure depending
on the header field type.

next - Pointer to the next header field in linked list.

Structure sip_uri

This structure represents parsed SIP URI.

struct sip_uri {

k

str user; /* Username */
str passwd; [* Password */
str host; /* Host name */
str port; /* Port number */

str params; /* Parameters */
str headers;

Field Description:

user - Username if found in the URI.
passwd - Password if found in the URL.
host - Hostname of the URI.

params - Parameters of the URI if any.
headers - See the SIP RFC.

Structure via_body

The structure represents parsed Via header field. See file parse_via.h under
parser subdirectory for more details.

14

struct via_body {

int error;

str hdr; /* Contains "Via" or "v" */
str name;

str version;

str transport;

str host;

int port;

Chapter 4. Internal Data Structures

str port_str;

str params;

str comment;

int bsize; /* body size, not including hdr */
struct via_param* param_lIst; /* list of parameters*/

struct via_param* last_param; /*last via parameter, internal use*/

[* shortcuts to "important" params*/
struct via_param* branch;
struct via_param* received;

struct via_body* next; /* pointer to next via body string if
compact via or null */

h

Field Description:

error - The field contains error code when the parser was unable to parse the
header field.

e hdr - Header field name, it can be “Via” or “v” in this case.

* name- Protocol name (“SIP” in this case).

« version - Protocol version (for example “2.0”).

« transport - Transport protocol name (“TCP”, “UDP” and so on).
» host - Hostname or IP address contained in the Via header field.

e port - Port number as integer.

« port_str - Port number as string.

+ params - Unparsed parameters (as one string containing all the parameters).
« comment - Comment.

» bsize - Size of the body (not including hdr).

o param_Ist - Linked list of all parameters.

« last_param - Last parameter in the list.

+ branch - Branch parameter.

« received - Received parameter.

e next -If the Via is in compact form (more Vias in the same header field), this
field contains pointer to the next Via.

Structure ip_addr

The structure represents IPv4 or IPv6 address. It is defined in ip_addr.h

struct ip_addr{
unsigned int af; /* address family: AF_INET6 or AF_INET */
unsigned int len; /* address len, 16 or 4 */

[* 64 bits alligned address */
union {
unsigned int addr32[4];
unsigned short addr16[8];
unsigned char addr[16];

}u;

15

Chapter 4. Internal Data Structures

Structure lump

The structure describes modifications that should be made to the message before
the message will be sent.

The structure will be described in more detail later in chapter SIP Message Mod-
ifications.

Structure lump_rpl

The structure represents text that should be added to reply. List of such data is
kept in the request and processed when the request is being turned into reply.

The structure will be described in more detail later in chapter SIP Message MOd-
ifications.

Structure msg_start

The structure represents the first line of a SIP request or response.
The structure is defined in file parse_fline.h under parser subdirectory.

Structure Declaration

struct msg_start {

int type; /* Type of the Message - Request/Response */
union {
struct {
str method; [* Method string */
str uri; /* Request URI */
str version; /* SIP version */
int method_value; /* Parsed method */
} request;
struct {
str version; [* SIP version */
str status; [* Reply status */
str reason; /* Reply reason phrase */
unsigned int statuscode; /* Status code */
} reply;
;

g
Description of Request Related Fields:

« type - Type of the message - REQUEST or RESPONSE.
« method - Name of method (same as in the message).

o uri -Request URL

« version - Version string.

» method_value - Parsed method. Field method which is of type str will be
converted to integer and stored here. This is good for comparison, integer com-
parison is much faster then string comparison.

Description of Response Related Fields:

version - Version string.

status - Response status code as string.

« reason - Response reason string as in the message.

statuscode - Response status code converted to integer.

16

Chapter 4. Internal Data Structures

Structure sip_msg

This is the most important structure in the whole server. This structure represents
a SIP message. When a message is received, it is immediately converted into this
structure and all operations are performed over the structure. After the server
finished processing, this structure is converted back to character array buffer and
the buffer is sent out.

Structure Declaration:

struct sip_msg {

unsigned int id; /* message id, unique/process*/

struct msg_start first_line; /* Message first line */

struct via_body* vial,; /* The first via */

struct via_body* via2; /* The second via */

struct hdr_field* headers; /* All the parsed headers*/

struct hdr_field* last_header; /* Pointer to the last parsed header*/

int parsed_flag; /* Already parsed header field types */

I* Via, To, CSeq, Call-ld, From, end of header*/
[* first occurance of it; subsequent occurances

* saved in 'headers’

*/

struct hdr_field* h_vial;
struct hdr_field* h_via2;
struct hdr_field* callid;

struct hdr_field* to;

struct hdr_field* cseq;

struct hdr_field* from;

struct hdr_field* contact;
struct hdr_field* maxforwards;
struct hdr_field* route;

struct hdr_field* record_route;
struct hdr_field* content_type;
struct hdr_field* content_length;
struct hdr_field* authorization;
struct hdr_field* expires;
struct hdr_field* proxy_auth;
struct hdr_field* www_auth;
struct hdr_field* supported;
struct hdr_field* require;
struct hdr_field* proxy_require;
struct hdr_field* unsupported;
struct hdr_field* allow;

struct hdr_field* event;

char* eoh; /* pointer to the end of header (if found) or null */
char* unparsed; [* here we stopped parsing*/

struct ip_addr src_ip;
struct ip_addr dst_ip;

char* orig; [* original message copy */
char* buf; [* scratch pad, holds a modfied message,
* via, etc. point into it
*/
unsigned int len; /* message len (orig) */

/* modifications */

str new_uri; [* changed first line uri*/
int parsed_uri_ok; /* 1 if parsed_uri is valid, 0 if not */
struct sip_uri parsed_uri; /* speed-up > keep here the parsed uri*/
struct lump* add_rm; /* used for all the forwarded

* requests */
struct lump* repl_add_rm; /* used for all the forwarded replies */

struct lump_rpl *reply_lump; /* only for localy generated replies !!!*/
char add_to_branch_s[MAX_BRANCH_PARAM_LEN];

17

Chapter 4. Internal Data Structures

18

int add_to_branch_len;

[* index to TM hash table; stored in core to avoid unnecessary calcs */
unsigned int hash_index;

[* allows to set various flags on the message; may be used for
* simple inter-module communication or remembering processing state

* reached
*/
flag_t flags;
h
Field Description:

e id -Unique ID of the message within a process context.
« first_line - Parsed first line of the message.

e vial - The first Via - parsed.

e via2 -The second Via - parsed.

« headers - Linked list of all parsed headers.

 last_header - Pointer to the last parsed header (parsing is incremental, that
means that the parser will stop if all requested headers were found and next
time it will continue at the place where it stopped previously. Therefore this
field will not point to the last header of the message if the whole message hasn't
been parsed yet).

parsed_flag - Already parsed header field types (bitwise OR).

The following fields are set to zero if the corresponding header field was not
found in the message or hasn’t been parsed yet. (These fields are called hooks -
they always point to the first occurence if there is more than one header field of
the same type).

e h_vial -DPointer to the first Via header field.

e h_via2 - Pointer to the second Via header field.

o callid - Pointer to the first Call-ID header field.

» to - Pointer to the first To header field.

» cseq - Pointer to the first CSeq header field.

o from - Pointer to the first From header field.

» contact - Pointer to the first Contact header field.

» maxforwards - Pointer to the first Max-Forwards header field.

« route - Pointer to the first Route header field.

» record_route - Pointer to the first Record-Route header field.

« content_type - Pointer to the first Content-Type header field.

« content_length - Pointer to the first Content-Length header field.
« authorization - Pointer to the first Authorization header field.
« expires - Pointer to the first Expires header field.

e proxy_auth - Pointer to the first Proxy-Authorize header field.

« www_auth - Pointer to the first WWW-Authorize header field.

» supported - Pointer to the first Supported header field.

« require - Pointer to the first Require header field.

e proxy_require - Pointer to the first Proxy-Require header field.
« unsupported - Pointer to the first Unsupported header field.

« allow - Pointer to the first Allow header field.

e event - Pointer to the first Event header field.

Chapter 4. Internal Data Structures

The following fields are mostly used internally by the server and should be mod-
ified through dedicated functions only.

eoh - Pointer to the End of Header or null if not found yet (the field will be set
if and only if the whole message was parsed already).

unparsed - Pointer to the first unparsed character in the message.
src_ip - Sender’s IP address.
dst_ip - Destination’s IP address.

orig - Original (unmodified) message copy, this field will hold unmodified
copy of the message during the whole message lifetime.

buf - Message scratch-pad (modified copy of the message) - All modifications
made to the message will be done here.

len - Length of the message (unmodified).

new_uri - New Request-URI to be used when forwarding the message.
parsed_uri_ok -1ifparsed uri isvalid, 0if not.

parsed_uri - The original parsed Request URI, sometimes it might be nec-
essary to revert changes made to the Request URI and therefore we store the
original URI here.

add_rm - Linked list describing all modifications that will be made to REQEST

before it will be forwarded. The list will be processed when the request is being
converted to character array (i.e. immediately before the request will be send
out).

repl_add_rm - Linked list describing all modifications that will be made to
REPLY before it will be forwarded. the list will be processed when the reply is
being converted to character array (i.e. immediately before the request will be
send out).

reply_lump - This is list of data chunks that should be appended to localy
generated reply, i.e. when the server is generating local reply out of the request.
A local reply is reply generated by the server. For example, when processing
of a request fails for some reason, the server might generate an error reply and
send it back to sender.

add_to_branch_s - String to be appended to branch parameter.
add_to_branch_len - Length of the string.

hash_index - Index to a hash table in TM module.

flags - Allows to set various flags on the message. May be used for simple
inter-module communication or remembering processing state reached.

19

Chapter 4. Internal Data Structures

20

Chapter 5. The Routing Engine

In a previous section we discussed how routing part of a config file gets trans-
lated into binary representation. In this section, we will discuss how the binary
representation is used during message processing.

Upon a SIP message receipt, the server performs some basic sanity checks and
converts the message into sip_msg structure. After that the Routing Engine will
start processing the message.

The routing engine can be found in file action.c

The main function is run_actions. The function accepts two parameters. The
first parameter is list of actions to be processed (Remember, the config file gets
translated into array of linked lists. Each linked list in the array represents one
"route" part of the config file). The second parameter is sip_msg structure repre-
senting the message to be processed.

Upon a receipt of a request, the linked list representing the main route part will be
processed so the first parameter will be rlist[0] . (The linked list of main route
part is always at index 0).

The function will then sequentially call do_action function for each element of
the linked list. Return value of the function is important. If the function returns 0,
processing of the list will be stopped. By returning 0 a command can indicate that
processing of the message should be stopped and the message will be dropped.

Modules may export so-called on_break handlers. on_break handler is a function,
that will be called when processing of the linked-list is interrupted (ret == 0). All
such handlers will be called when processing of the linked-list is finished and ret

do_action Function

do_action function is core of the routing engine. There is a big switch statement.
Each case of the statements is one command handled by the server core itself.

The following commands are handled by the SER core itself: drop , forward ,
send, log , append_branch , len_gt , setflag , resetflag , isflagset , error ,
route , exec, revert_uri , set_host , set_hostport , set user , set userpass ,
set_port ,set uri ,prefix ,strip ,if , module .

Each of the commands is represented by a case statement in the switch. (For ex-
ample, if you are interested in implementation of drop command, look at “case
DROP_T:” statement in the function.

The respective commands will be described now.

« drop - This command is very simple, it simply returns 0 which will result in
abortion of processing of the request. No other commands after drop will be
executed.

« forward - The function will forward the message further. The message will be
either forwarded to the Request URI of the message or to IP or host given as
parameter.

In the first case, host in the Request URI must be converted into correspond-
ing IP address. Function mk_proxy converts hostname to corresponding IP ad-
dress. The message is then sent out using forward_request ~ function.

In the second case, hostname was converted to IP address in fixup i.e. immedi-
ately after the config file was compiled into its binary representation. The first
parameter is pointer to proxy structure created in the fixup and therefore we
only need to call forward_request ~ here to forward the message further.

» send - This functions sends the message to a third-party host. The message
will be sent out as is - i.e. without Request URI and Via altering.

21

Chapter 5. The Routing Engine

22

Hostname or IP address of the third-party host is specified as a parameter of
the function.

The message will be sent out using udp_send directly.

log - The message given as a parameter will be logged using system logger.
It can be either syslog or stderr (depends on configuration). The message is
logged using LOGwhich is a macro defined in dprint.h header file.

append_branch - Append a new URI for forking.

More than one destinations may be associated with a single SIP request. If the
server was configured so, it will use all the destinations and fork the request.

The server keeps an array of all destinations, that should be used when forking.
The array and related functions can be found in file dset.c . There is function
append_branch which adds a new destination to the set.

This command simply calls append_branch function and adds a new destina-
tion to the destination set.

len_gt - The command accepts one number as a parameter. It then compares
the number with length of the message. If the message length is greater or equal
then the number then 1 will be returned otherwise the function returns -1.

setflag - Sets a flag in the message. The command simply calls setflags
function that will set the flag. Fore more information see file flag.c

resetflag - Same as command setflag - only resetflag will be called instead
of setflag.

isflagset - Test if the flag is set or not.

error - Log a message with NOTICE log level.
route - Execute another route statement.

As we have mentioned already, there can be more that one route statement in
the config file. One of them is main (without number), the other are additional.
This command makes it possible to execute an additional route statement.

The command accepts one parameter which is route statement number. First
sanity checks over the parameter will be performed. If the checks passed, func-
tion run_actions will be called. The function accepts two parameters. The first
one is linked list to execute, the second one is sip_msg structure representing
the message to be processed.

As you might remember, each route statement was compiled into linked list of
commands to be executed and head of the linked list was stored inrlist ~ array.
For example, head of linked list representing route statement with number 4
will be stored at position 4 in the array (position 0 is reserved for the main
route statement).

So the command will simply call run_actions(rlist[a->p1.number], msg)
and that will execute route statement with number given as parameter.

exec - Execute a shell command.

The command accepts one parameter of type char*. The string given as param-
eter will be passed to system function which will in turn execute /bin/sh -c
<string >

revert_uri - Revert changes made to the Request URI.

If there is a new URI stored in new_uri of sip_msg structure, it will be freed.
The original Request URI will be used when forwarding the message.

If there is a valid URI in parsed_uri field of sip_msg structure (indicated by
parsed_uri_ok field), it will be freed too.

Chapter 5. The Routing Engine

+ set host - Change hostname of Request URI to value given as parameter.

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

+ set_hostport - change hostname and port of Request URI to value given as
string parameter.

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

« set_user - Setusername part of Request URI to string given as parameter.

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

» set_userpass - Set username and password part of Request URI to string
given as parameter.

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

+ set port - Set port of Request URI to value given as parameter.

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

o set uri - Setanew Request URL

If there is a URI in new_uri field, it will be freed. If there is a valid URI in
parsed_uri field, it will be freed too.

Then URI given as parameter will be stored in new_uri field. (If new_uri
contains a URI it will be used instead of Request URI when forwarding the
message).

» prefix - Setthe parameter as username prefix.
The string will be put immediately after “sip:” part of the Request URL

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

+ strip - Remove first n characters of username in Request URL

If there is a URI in new_uri field, it will be modified, otherwise the original
Request URI will be modified.

e if -if Statement.

There is an expression associated with the command and one or two linked
lists of comands. The expression is a regular expression compiled into binary
form in the fixup when the config file was compiled.

The expression will be evaluated now. If the result is > 0, the first linked list will
be executed using run_action function. The linked list represents command
enclosed in curly braces of if command.

Otherwise, if there is the second list, it will be executed in the same way. The
second list represents commads of else statement.

« module - Execute a function exported by a module.
23

Chapter 5. The Routing Engine

24

When a command in a route statement is not recognized by the core itself (i.e.
it is not one of commands handled by the core itself), list of exported functions
of all loaded modules will be searched for a function with corresponding name
and number of parameters.

If the function was found, module command (this one) will be created and
pointer to the function will be stored in pl.data field.

So, this command will simply call function whose pointer is in pl.data field
and will pass 2 parameters to the function. If one or both of the parameters
were not used, 0 will be passed instead.

Return value of the function will be returned as return value of module com-
mand.

This command makes SER pretty extensible while the core itself is still reason-
ably small and clean. Additional functionality is put in modules and loaded
only when needed.

Chapter 6. The Message Parser

In this section we will discuss internals of the SIP message header parser imple-
mented in the server. Message parsing is very important and one of the most time
consuming operations of a SIP server. We have been trying to make the parser as
fast as possible.

A header field parser can be either in the server core or in a module. By conven-
tion, parser that is needed by the core itself or is needed by at least two modules
will be in the core. Parsers contained in modules will be not described in this
section.

There is a parser subdirectory that contains all the parsers and related stuff.

The following parsers can be found under parser subdirectory:

Structure of a SIP Message

A SIP message consists of message header and optional message body. The
header is separated from the body with a empty line (containing CRLF only).

Message header consists of the first line and one or more header fields. The first
line determines type of the message. Header fields provide additional informa-
tion that is needed by clients and servers to be able to process the message.

Each header field consists of header field name and header field body. Header

",y

field name is delimited from header field body by a colon (“:”). For example,
“Server: SIP Express Router” - in this case “Server” is header field name and “SIP
Express Router” is header field body.

The Parser Organization

« First Line Parser - Parses the first line of a SIP message.

» Header Name Parser- Parsers Name part of a header field (part before colon).
 To Header Parser - Parses body of To header field.

» From Header Parser - Parses body of From header field.

» CSeq Header Parser - Parses body of CSeq header field.

» Event Header Parser - Parses body of Event header field.

« Expires Header Parser - Parses body of Expires header field.

 Via Header Parser - Parses body of Via header field.

» Contact Header Parser - Parses body of Contact header field.

« Digest Parser - Parses digest response.

The server implements what we call incremental parsing. It means that a header
field will be not parsed unless it is really needed. There is a minimal set of header
that will be parsed every time. The set includes:

 The first line - the server must know if the message is request or response

e Via header field - Via will be needed for sure. We must add ourself to Via list
when forwarding the message.

The First Line Parser

Purpose of the parser is to parse the first line of a SIP message. The first line is
represented by msg_start structure define in file parse_fline.h under parser
subdirectory.

25

Chapter 6. The Message Parser

The main function of the first line parser is parse_first_line , the function will
fill in msg_start structure.

Follow inline comments in the function if you want to add support for a new
message type.

The Header Field Name Parser

26

The purpose of the header field type parser is to recognize type of a header field.
The following types of header field will be recognized:

Via, To, From, CSeq, Call-ID, Contact, Max-Forwards, Route, Record-Route,
Content-Type, Content-Length, Authorization, Expires, Proxy-Authorization,
WWW-Authorization, supported, Require, Proxy-Require, Unsupported, Allow,
Event.

All other header field types will be marked as HDR_OTHER.

Main function of header name parser is parse_hname2 . The function can be
found in file parse_hname.c . The function accepts pointers to begin and end of
a header field and fills in hdf_field structure. name field will point to the header
field name, body field will point to the header field body and type field will
contain type of the header field if known and HDR_OTHER if unknown.

The parser is 32-bit, it means, that it processes 4 characters of header field name
at time. 4 characters of a header field name are converted to an integer and the
integer is then compared. This is much faster than comparing byte by byte. Be-
cause the server is compiled on at least 32-bit architectures, such comparsion will
be compiled into one instruction instead of 4 instructions.

We did some performance measurement and 32-bit parsing is about 3 times faster
for a typical SIP message than corresponding automaton comparing byte by byte.
Performance may vary depending on the message size, parsed header fields and
header fields type. Test showed that it was always as fast as corresponding 1-byte
comparing automaton.

Since comparison must be case insensitive in case of header field names, it is
necessary to convert it to lower case first and then compare. Since converting
byte by byte would slow down the parser a lot, we have implemented a hash
table, that can again convert 4 bytes at once. Since set of keys that need to be
converted to lowercase is known (the set consists of all possible 4-byte parts of all
recognized header field names) we can precalculate size of the hash table to be
synonym-less. That will simplify (and speed up) the lookup a lot. The hash table
must be initialized upon the server startup (function init_hfname_parser)-

The header name parser consists of several files, all of them are under parser
subdirectory. Main file is parse_hname2.c - this files contains the parser itself
and functions used to initialize and lookup the hash table. File keys.h contains
automatically generated set of macros. Each macro is a group of 4 bytes converted
to integer. The macros are used for comparison and the hash table initialization.
For example, for Max-Forwards header field name, the following macros are de-
fined in the file:

#define _max__ 0x2d78616d /* "max-" */
#define _maX__ 0x2d58616d /* "maX-" */
#define _mAx__ 0x2d78416d /* "mAx-" */
#define _mAX__ 0x2d58416d /* "mAX-" */
#define _Max__ 0x2d78614d /* "Max-" */
#define _MaX__ 0x2d58614d /* "MaX-" */
#define _MAx__ 0x2d78414d [* "MAX-" */
#define _MAX__ 0x2d58414d /* "MAX-" */

#define _forw_ Ox77726f66 /* "forw" */
#define _forW_ Ox57726f66 [* "forw" */
#define _foRw_ 0x77526f66 [* "foRw" */
#define _foRW_ 0x57526f66 /* "foRW" */
#define _fOrw_ Ox77724f66 /* "fOrw" */
#define _fOrw_ 0x57724f66 /* "fOrw" */
#define _fORw_ 0x77524f66 /* "fORw" */

Chapter 6. The Message Parser

#define _fORW_ 0x57524f66 /* "fORW" */
#define _Forw_ O0x77726f46 /* "Forw" */
#define _ForW_ 0x57726f46 /* "Forw" */
#define _FORw_ 0x77526f46 /* "FORw" */
#define _FOoRW_ 0x57526f46 /* "FORW" */
#define _FOrw_ Ox77724f46 [* "FOrw" */
#define _FOrW_ Ox57724f46 [* "FOrwW" */
#define _FORw_ 0x77524f46 /* "FORw" */
#define _FORW_ 0x57524f46 [* "FORW" */

#define _ards_ 0x73647261 [* "ards" */
#define _ardS_ 0x53647261 /* "ardS" */
#define _arDs_ 0x73447261 [* "arDs" */
#define _arDS_ 0x53447261 /* "arDS" */
#define _aRds_ 0x73645261 /* "aRds" */
#define _aRdS_ 0x53645261 /* "aRdS" */
#define _aRDs_ 0x73445261 /* "aRDs" */
#define _aRDS_ 0x53445261 /* "aRDS" */
#define _Ards_ 0x73647241 /* "Ards" */
#define _ArdS_ 0x53647241 /* "ArdS" */
#define _ArDs_ 0x73447241 [* "ArDs" */
#define _ArDS_ 0x53447241 [* "ArDS" */
#define _ARds_ 0x73645241 /* "ARds" */
#define _ARdS_ 0x53645241 [* "ARdS" */
#define _ARDs_ 0x73445241 [* "ARDs" */
#define _ARDS_ 0x53445241 /* "ARDS" */

As you can see, Max-Forwards name was divided into three 4-byte chunks: Max-
, Forw, ards. The file contains macros for every possible lower and upper case
character combination of the chunks. Because the name (and therefore chunks)
can contain colon (“:”), minus or space and these characters are not allowed in
macro name, they must be substituted. Colon is substituted by “1”, minus is sub-

stituted by underscore (“_") and space is substituted by “2”.

When initializing the hash table, all these macros will be used as keys to the hash

table. One of each upper and lower case combinations will be used as value.
Which one ?

There is a convention that each word of a header field name starts with a upper
case character. For example, most of user agents will send “Max-Forwards”, mes-
sages containing some other combination of upper and lower case characters (for
example: “max-forwards”, “MAX-FORWARDS”, “mAX-fORWARDS”) are very
rare (but it is possible).

Considering the previous paragraph, we optimized the parser for the most com-
mon case. When all header fields have upper and lower case characters accord-
ing to the convention, there is no need to do hash table lookups, which is another
speed up.

For example suppose we are trying to figure out if the header field name is Max-
Forwards and the header field name is formed according to the convention (i.e.
“Max-Forwards”):

Get the first 4 bytes of the header field name (“Max-"), convert it to an integer

and compare to “_Max__" macro. Comparison succeeded, continue with the
next step.

+ Getnext 4 bytes of the header field name (“Forw”), convert it to an integer and

compare to “_Forw_" macro. Comparison succeeded, continue with the next
step.

» Get next 4 bytes of the header field name (“ards”), convert it to an integer and

compare to “_ards_” macro. Comparison succeeded, continue with the next
step.

« If the following characters are spaces and tabs followed by a colon (or colon
directly without spaces and tabs), we found Max-Forwards header field name
and can set type field to HDR_MAXFORWARDS. Otherwise (other characters

than colon, spaces and tabs) it is some other header field and set type field to
HDR_OTHER.

27

Chapter 6. The Message Parser

As you can see, there is no need to do hash table lookups if the header field was
formed according to the convention and the comparison was very fast (only 3
comparisons needed !).

Now lets consider another example, the header field was not formed according
to the convention, for example “MAX-forwards”:

¢ Get the first 4 bytes of the header field name (“MAX-"), convert it to an integer
and compare to “_Max__" macro.

Comparison failed, try to lookup “MAX-" converted to integer in the hash ta-
ble. It was found, result is “Max-" converted to integer.

Try to compare the result from the hash table to “_Max__"” macro. Comparison
succeeded, continue with the next step.

» Compare next 4 bytes of the header field name (“forw”), convert it to an integer
and compare to “_Max__" macro.

Comparison failed, try to lookup “forw” converted to integer in the hash table.
It was found, result is “Forw” converted to integer.

Try to compare the result from the hash table to “Forw” macro. Comparison
succeeded, continue with the next step.

» Compare next 4 bytes of the header field name (“ards”), convert it to integer
and compare to “ards” macro. Comparison succeeded, continue with the next
step.

« If the following characters are spaces and tabs followed by a colon (or colon
directly without spaces and tabs), we found Max-Forwards header field name
and can set type field to HDR_MAXFORWARDS. Otherwise (other characters
than colon, spaces and tabs) it is some other header field and set type field to
HDR_OTHER.

In this example, we had to do 2 hash table lookups and 2 more comparisons.
Even this variant is still very fast, because the hash table lookup is synonym-less,
lookups are very fast.

The Header Field Body Parsers

28

To HF Body Parser

Purpose of this parser is to parse body of To header field. The parser can be found
in file parse_to.c under parser subdirectory.

Main function is parse_to but there is no need to call the function explicitly.
Every time the parser finds a To header field, this function will be called auto-
matically. Result of the parser is to_body structure. Pointer to the structure will
be stored in parsed field of hdr_field structure. Since the pointer is void*, there
is a convenience macro get_to in file parse_to.h that will do the necessary type-
casting and will return pointer to to_body structure.

The parser itself is a finite state machine that will parse To body according to the
grammar defined in RFC3261 and store result in to_body structure.

The parser gets called automatically from function get_hdr_field in file
msg_parser.c . The function first creates and initializes an instance of to_body
structure, then calls parse_to function with the structure as a parameter and
if everything went OK, puts the pointer to the structure in parsed field of
hdr_field structure representing the parsed To header field.

Chapter 6. The Message Parser

The newly created structure will be freed when the message is being destroyed,
see function clean_hdr_field in file hf.c for more details.

Structure to_body

The structure represents parsed To body. The structure is declared in parse_to.h
file.

Structure Declaration:

struct to_param{

int type; /* Type of parameter */
str name; /* Name of parameter */
str value; /* Parameter value */
struct to_param* next; /* Next parameter in the list */
h
struct to_body{
int error; [* Error code */
str body; [* The whole header field body */
str uri; * URI */
str tag_value; [* Value of tag */

struct to_param *param_|st; [* Linked list of parameters */
struct to_param *last_param; /* Last parameter in the list */

k

Structure to_param is a temporary structure representing a To URI parameter.
Right now only TAG parameter will be marked in type field. All other parame-
ters will have the same type.

Field Description:

+ error - Error code will be put here when parsing of To body fails.
e body - The whole header field body.

o uri - URI of the To header field.

« tag_value - Value of tag parameter if present.

« param_Ist - Linked list of all parameters.

 last_param - Pointer to the last parameter in the linked list.

From HF Body Parser

This parser is only a wrapper to the To header field parser. Since bodies of both
header fields are identical, From parser only calls To parser.

The wrapper can be found in file parse_from.c under parser subdirectory.
There is only one function called parse_from_header . The function accepts one
parameter which is pointer to structure representing the From header field to be
parsed. The function creates an instance of to_body structure and initializes it. It
then calls parse_to function and if everything went OK, the pointer to the
newly created structure will be put in parsed field of the structure representing
the parsed header field.

The newly created structure will be freed when the whole message is being de-
stroyed. (See To header field parser description for more details).

From parser must be called explicitly !

If the main parser finds a From header field, it will not parse the header field body
automaticaly. It is up to you to call the parse_from_header = when you want to
parse a From header field body.

29

Chapter 6. The Message Parser

30

CSeq HF Body Parser

Purpose of this parser is to parse body of CSeq header field. The parser can be
found in file parse_cseq.c under parser subdirectory.

Main function is parse_cseq but there is no need to call the function explicitly.
Every time the parser finds a CSeq header field, this function will be called auto-
matically. Result of the parser is cseq_body structure. Pointer to the structure will
be stored in parsed field of hdr_field structure. Since the pointer is void*, there
is a convenience macro get_cseq in file parse_cseq.h that will do the necessary
type-casting and will return pointer to cseq_body structure.

The parser will parse CSeq body according to the grammar defined in RFC3261
and store result in cseq_body structure.

The parser gets called automatically from function get hdr_field in file
msg_parser.c . The function first creates and initializes an instance of cseq_body
structure, then calls parse_cseq function with the structure as a parameter and
if everything went OK, puts the pointer to the structure in parsed field of
hdr_field structure representing the parsed CSeq header field.

The newly created structure will be freed when the message is being destroyed,
see function clean_hdr_field in file hf.c for more details.

Structure cseq_body

The structure represents parsed CSeq body. The structure is declared in
parse_cseq.h file.

Structure Declaration:
struct cseq_body{
int error; /* Error code */

str number; /* CSeq number */
str method; /* Associated method */

g
Field Description:

« error - Error code will be put here when parsing of CSeq body fails.
» number - CSeq number as string.
« method - CSeq method.

Event HF Body Parser

Purpose of this parser is to parse body of an Event Header field. The parser can
be found in file parse_event.c under parser subdirectory.

Note: This is NOT fully featured Event body parser ! The parser was written for Pres-
ence Agent module only and thus can recognize Presence package only. No sub-
packages will be recognized. All other packages will be marked as “OTHER”.

The parser should be replace by a more generic parser if subpackages or parameters
should be parsed too.

Main function is parse_event in file parse_event.c . The function will create an
instance of event_t structure and call the parser. If everything went OK, pointer to
the newly created structure will be stored in parsed field of hdr_field structure
representing the parsed header field.

As usually, the newly created structure will be freed when the whole message is
being destroyed. See function clean_hdr_field in file hf.c .

Chapter 6. The Message Parser

The parser will be not called automatically when the main parser finds an Event
header field. It is up to you to call the parser when you really need the body of
the header field to be parsed (call parse_event function).

Structure event _t

The structure represents parsed Event body. The structure is declared in
parse_event.h file.

Structure Declaration:

#define EVENT_OTHER 0
#define EVENT_PRESENCE 1

typedef struct event {
str text; /* Original string representation */
int parsed; /* Parsed variant */

} event_t;

Field Description:

+ text - Packagename as text.

» parsed -Package name as integer. It will be EVENT_PRESENCE for presence
package and EVENT_OTHER for rest.

Expires HF Body Parser

The parser parses body of Expires header field. The body is very simple, it con-
sists of number only. so the parser only removes any leading tabs and spaces and
converts the number from string to integer. That'’s it.

The parser can be found in file parse_expires.c under parser subdirectory.
Main function is parse_expires . The function is not called automaticaly when
an Expires header field was found. It is up to you to call the function if you need
the body to be parsed.

The function creates a new instance of exp_body_t structure and calls the parser.
If everything went OK, pointer to the newly created structure will be saved in
parsed field of the hdr_field structure representing the parsed header field.

Structure exp_body_t

The structure represents parsed Expires body. The structure is declared in
parse_expires.h file.

Structure Declaration:

typedef struct exp_body {
str text; /* Original text representation */
int val, /* Parsed value */

} exp_body t;

Field Description:

« text - Expires value as text.

« val - Expires value as integer.

31

Chapter 6. The Message Parser

32

Via HF Body Parser

Purpose of this parser is to parse body of Via header field. The parser can be
found in file parse_via.c under parser subdirectory.

Main function is parse_via but there is no need to call the function explicitly.
Every time the parser finds a Via header field, this function will be called auto-
matically. Result of the parser is via_body structure. Pointer to the structure will
be stored in parsed field of hdr_field structure representing the parsed header
field.

The parser itself is a finite state machine that will parse Via body according to the
grammar defined in RFC3261 and store result in via_body structure.

The parser gets called automatically from function get_hdr_field in file
msg_parser.c . The function first creates and initializes an instance of via_body
structure, then calls parse_via function with the structure as a parameter and
if everything went OK, puts the pointer to the structure in parsed field of
hdr_field structure representing the parsed Via header field.

The newly created structure will be freed when the message is being destroyed,
see function clean_hdr_field in file hf.c for more details.

Structure via_body is described in section Structure via_body.

Contact HF Body Parser

The parser is located under parser/contact subdirectory. The parser is not
called automaticaly when the main parser finds a Contact header field. It is your
responsibility to call the parser if you want a Contact header field body to be
parsed.

Main function is parse_contact in file parse_contact.c . The function accepts
one parameter which is structure hdr_field representing the header field to be
parsed. A single Contact header field may contain multiple contacts, the parser
will parse all of them and will create linked list of all such contacts.

The function creates and initializes an instance of contact_body structure. Then
function contact_parser ~ will be called. If everything went OK, pointer to the
newly created structure will be stored in parsed field of the hdr_field structure
representing the parsed header field.

Function contact_parser will then check if the contact is star, if not it will call
parse_contacts function that will parse all contacts of the header field.

Function parse_contacts can be found in file contact.c . It extracts URI and
parses all contact parameters.

The Contact parameter parser can be found in file cparam.c .

The following structures will be created during parsing:

Note: Mind that none of string in the following structures is zero terminated ! Be very
carefull when processing the strings with functions that require zero termination (printf
for example) !

typedef struct contact_body {
unsigned char star; [* Star contact */
contact_t* contacts; /* List of contacts */
} contact_body t;

This is the main structure. Pointer to instance of this structure will be stored in
parsed field of structure representing the header field to be parsed. The struc-
ture contains two field:

o star field - This field will contain 1 if the Contact was star (see RFC3261 for
more details).

Chapter 6. The Message Parser

» contacts field - This field contains pointer to linked list of all contacts found
in the Contact header field.

typedef struct contact {

struri; /* contact uri */
cparam_t* q; [* q parameter hook */
cparam_t* expires; [* expires parameter hook */
cparam_t* method,; /* method parameter hook */
cparam_t* params; /* List of all parameters */
struct contact* next; /* Next contact in the list */

} contact_t;

This structure represents one Contact (Mind that there might be several contacts
in one Contact header field delimited by a comma). Its fields have the following
meaning;:

uri - This field contains pointer to begin of URI and its length.

e (- This is a hook to structure representing q parameter. If there is no such
parameter, the hook contains 0.

« expires - This is a hook to structure representing expires parameter. If there
is no such parameter, the hook contains 0.

« method - This is a hook to structure representing method parameter. If there
is no such parameter, the hook contains 0.

params - Linked list of all parameters.

e next -Pointer to the next contact that was in the same header field.

typedef enum cptype {
CP_OTHER = 0, /* Unknown parameter */

CP_Q, [* Q parameter */

CP_EXPIRES, /* Expires parameter */

CP_METHOD [* Method parameter */
} cptype_t;

This is an enum of recognized types of contact parameters. Q parameter will
have type set to CP_Q, Expires parameter will have type set to CP_EXPIRES and
Method parameter will have type set to CP_METHOD. All other parameters will
have type set to CP_OTHER.

/*
* Structure representing a contact
*
typedef struct cparam {
cptype_t type; /* Type of the parameter */
str name; /* Parameter name */
str body; [* Parameter body */
struct cparam* next; /* Next parameter in the list */
} cparam_t;

This structure represents a contact parameter. Field description follows:

+ type - Type of the parameter, see cptype enum for more details.
+ name - Name of the parameter (i.e. the part before “=").
+ body - Body of the parameter (i.e. the part after “=").

e next - Next parameter in the linked list.

33

Chapter 6. The Message Parser

34

Digest Body Parser

Purpose of this parser is to parse digest response. The parser can be found un-
der parser/digest subdirectory. There might be several header fields containing
digest response, for example Proxy-Authorization or WWW-Authorization. The
parser can be used for all of them.

The parser is not called automaticaly when by the main parser. It is your respon-
sibility to call the parser when you want a digest response to be parsed.

Main function is parse_credentials defined in digest.c . The function accepts
one parameter which is header field to be parsed. As result the function will cre-
ate an instance of auth_body_t structure which will represent the parsed digest
credentials. Pointer to the structure will be put in parsed field of the hdr_field
structure representing the parsed header field. It will be freed when the whole
message is being destroyed.

The digest parser contains 32-bit digest parameter parser. The parser was in detail
described in section Header Field Name Parser. See that section for more details
about the digest parameter parser algorithm, they work in the same way.

Description of digest related stuctures follows:

typedef struct auth_body {
[* This is pointer to header field containing
* parsed authorized digest credentials. This
* pointer is set in sip_msg->{authorization,proxy_auth}

* hooks.

*

* This is necessary for functions called after

* {www,proxy} authorize, these functions need to know
* which credentials are authorized and they will simply
* look into

* sip_msg->{authorization,proxy_auth}->parsed->authorized
*

struct hdr_field* authorized;

dig_cred_t digest; /* Parsed digest credentials */
unsigned char stale; /* Flag is set if nonce is stale */
int nonce_retries; /* How many times the nonce was used */

} auth_body t;

This is the “main” stucture. Pointer to the structure will be stored in parsed field
of hdr_field structure. Detailed description of its fields follows:

 authorized - Thisisahook to header field containing authorized credentials.

A SIP message may contain several credentials. They are distinguished using
realm parameter. When the server is trying to authorize the message, it must
first find credentials with corresponding realm and than authorize the creden-
tials. To authorize credentials server calculates response string and if the string
matches to response string contained in the credentials, credentials are autho-
rized (in fact it means that the user specified in the credentials knows pass-
word, nothing more, nothing less).

It would be good idea to remember which credentials contained in the message
are authorized, there might be other functions interested in knowing which
credentials are authorized.

That is what is this field for. A function that sucessfully authorized credentials
(currenty there is only one such function in the server, it is function authorize

in auth module) will put pointer to header field containing the authorized cre-
dentials in this field. Because there might be several header field containing cre-
dentials, the pointer will be put in authorized field in the first header field
in the message containg credentials. That means that it will be either header
field whose pointer is in www_auth or proxy_auth field of sip_msg structure
representing the message.

Chapter 6. The Message Parser

When a function wants to find authorized credentials, it will
simply look in msg->www_auth->parsed->authorized or
msg->proxy_auth->parsed->authorized , where msg is variable
containing pointer to sip_msg structure.

To simplify the task of saving and retrieving pointer to authorized credentials,
there are two convenience functions defined in digest.c file. They will be de-
scribed later.

 digest - Structure containing parsed digest credentials. The structure will be
described in detail later.

« stale - This field will be set to 1 if the server received a stale nonce. Next time
when the server will be sending another challenge, it will use “stale=true” pa-
rameter. “stale=true” indicates to the client that username and password used
to calculate response were correct, but nonce was stale. The client should re-
calculate response with the same username and password (without disturbing
user) and new nonce. For more details see RFC2617.

e nonce_retries - This fields indicates number of authorization attempts
with same nonce.

/*
* Errors returned by check dig_cred
*/
typedef enum dig_err {
E_DIG_OK = 0, [* Everything is OK */
E_DIG_USERNAME = 1, /* Username missing */
E_DIG_REALM = 2, /* Realm missing */
E_DIG_NONCE = 4, /* Nonce value missing */
E_DIG_URI = 8, /* URI missing */
E_DIG_RESPONSE = 16, /* Response missing */
E_DIG_CNONCE = 32, /* CNONCE missing */
E _DIG_NC = 64, /* Nonce-count missing */
} dig_err_t;

This is enum of all possible errors returned by check_dig_cred function.

« E_DIG_OK - No error found.

+ E_DIG_USERNAME - Username parameter missing in digest response.
» E_DIG_REALM - Realm parameter missing in digest response.

« E_DIG_NONCE - Nonce parameter missing in digest response.

» E_DIG_URI - Uri parameter missing in digest response.

» E_DIG_RESPONSE - Response parameter missing in digest response.

+ E_DIG_CNONCE - Cnonce parameter missing in digest response.

e E_DIG_NC - Nc parameter missing in digest response.

/* Type of algorithm used */
typedef enum alg {
ALG_UNSPEC = 0, /* Algorithm parameter not specified */

ALG_MD5 = 1, /* MD5 - default value*/
ALG_MD5SESS = 2, /* MD5-Session */
ALG_OTHER = 4 /* Unknown */

} alg_t;

This is enum of recognized algorithm types. (See description of algorithm struc-
ture for more details).

35

Chapter 6. The Message Parser

36

ALG_UNSPEC - Algorithm was not specified in digest response.
e ALG_MDS5 - “algorithm=MD5" was found in digest response.
o ALG_MDS5SESS - “algorithm=MD5-Session” was found in digest response.

o ALG_OTHER - Unknown algorithm parameter value was found in digest re-
sponse.

/* Quality Of Protection used */

typedef enum qop_type {
QOP_UNSPEC = 0, /* QOP parameter not present in response */

QOP_AUTH = 1, /* Authentication only */
QOP_AUTHINT = 2, /[* Authentication with integrity checks */
QOP_OTHER = 4 /* Unknown */

} qop_type_t;

This enum lists all recognized qop parameter values.

* QOP_UNSPEC - qop parameter was not found in digest response.

* QOP_AUTH - “qop=auth” was found in digest response.

* QOP_AUTHINT - “qop=auth-int” was found in digest response.

e QOP_OTHER - Unknow qop parameter value was found in digest response.

[* Algorithm structure */

struct algorithm {
str alg_str; /* The original string representation */
alg_t alg_parsed; /* Parsed value */

The structure represents “algorithm” parameter of digest response. Description
of fields follows:

o alg_str - Algorithm parameter value as string.

» alg_parsed - Parsed algorithm parameter value.

/* QOP structure */

struct gp {
str gop_str; /* The original string representation */
gop_type_t gop_parsed; /* Parsed value */

This structure represents “qop” parameter of digest response. Description of
fields follows:

» qop_str - Qop parameter value as string.

« qop_parsed - Parsed “qop” parameter value.

/~k

* Parsed digest credentials

*/

typedef struct dig_cred {
str username; /* Username */
str realm; /* Realm */
str nonce; /* Nonce value */
str uri; /* URI */

Chapter 6. The Message Parser

str response; /* Response string */
str algorithm; /* Algorithm in string representation */
struct algorithm alg; /* Type of algorithm used */
str cnonce; /* Cnonce value */
str opaque; /* Opaque data string */
struct gp qop; /* Quality Of Protection */
str nc; /* Nonce count parameter */
} dig_cred_t;

This structure represents set of digest credentials parameters. Description of field
follows:

« username - Value of “username” parameter.

e realm - Value of “realm” parameter.

+ nonce - Value of “nonce” parameter.

e uri - Value of “uri” parameter.

+ response - Value of “response” parameter.

« algorithm - Value of “algorithm” parameter as string.
+ alg - Parsed value of “algorithm” parameter.

« cnonce - Value of “cnonce” parameter.

« opaque - Value of “opaque” parameter.

e Qop - Value of “qop” parameter.

e nc - Value of “nc” parameter.

Other Functions Of the Digest Body Parser

There are some other mainly convenience functions defined in the parser. The
function will be in detail described in this section. All the functions are defined
in digest.c file.

dig_err_t check_dig_cred (dig_cred_t* _c);

This function performs some basic sanity check over parsed digest credentials.
The following conditions must be met for the checks to be successfull:

 There must be non-empty “username” parameter in the credentials.
¢ There must be non-empty “realm” parameter in the credentials.

» There must be non-empty “nonce” parameter in the credentials.

+ There must be non-empty “uri” parameter in the credentials.

+ There must be non-empty “response” parameter in the credentials.

 If qop parameter is set to QOP_AUTH or QOP_AUTHINT, then there must be
also non-empty “cnonce” and “nc” parameters in the digest.

Note: It is recommended to call check _dig_cred before you try to authorize the
credentials. If the function fails, there is no need to try to authorize the credentials
because the authorization will fail for sure.

int mark_authorized_cred (struct sip_msg* _m, struct hdr_field* _h);

37

Chapter 6. The Message Parser

38

This is convenience function. The function saves pointer to the authorized cre-
dentials. For more info see description of authorized field in auth_body struc-
ture.

int get_authorized_cred (struct sip_msg* _m, struct hdr_field** _h);

This is convenience function. The function will retrieve pointer to authorized cre-
dentials previously saved using mark_authoized_cred function. If there is no
such credentials, 0 will be stored in variable pointed to by the second parame-
ter. The function returns always zero. For more information see description of
authorized field in auth_body structure.

Chapter 7. The Module Interface

The server can load additional functionality through modules. Module loading
related functions and module interface will be described in this section.

All the data structures and functions mentioned in this section can be found in
files sr_module.h and sr_module.c

Structure sr_module

Each loaded module is represented by an instance of sr_module structure. All
the instances are linked. There is a global variable modules defined in file
sr_module.c which is head of linked-list of all loaded modules.

Detailed description of the structure follows:

struct sr_module{
char* path;
void* handle;
struct module_exports* exports;
struct sr_module* next;

k

Fields and their description:

e path - Path to the module. This is the path you pass as parameter to load-
module function in the config file.

handle - Handle returned by dlopen .

exports - Pointer to structure describing interface of the module (will be
described later).

e next - Pointer to the next sr_module structure in the linked list.

Structure module_exports

This structure describes interface that must be exported by each module. Every
module must have a global variable named exports which is of type struct mod-
ule_exports.

Immediately after dlopen the server will try to find symbol named exports in
the module to be loaded. This symbol is a structure describing interface of the
module. Pointer to the symbol will be then put in exports field of sr_module
structure representing the module in the server.

Detailed description of the structure follows:

struct module_exports{

char* name; /* null terminated module name */
char** cmd_names; /* cmd names registered

* by this modules */
cmd_function* cmd_pointers; [* pointers to the

* corresponding functions */
int* param_no; /* number of parameters used by

* the function */
fixup_function* fixup_pointers; /* pointers to functions

* called to "fix"

* the params, e.g: precompile

*are *

int cmd_no; /* number of registered commands
* (size of cmd_{names,pointers}
*/

char** param_names; [* parameter names registered

39

Chapter 7. The Module Interface

40

* by this modules */
modparam_t* param_types; /* Type of parameters */
void** param_pointers; [* Pointers to the corresponding

* memory locations */
int par_no; /* number of registered parameters */

init_function init_f; /* Initilization function */

response_function response_f; /* function used for responses,
* returns yes or no; can be null
*/

destroy_function destroy f; /* function called when the mod-

ule

k

* should be "destroyed", e.g: on
* ser exit;
* can be null */
onbreak_function onbreak f;
child_init_function init_child_f; /* function called by all
* processes after the fork */

Fields and their description:

name - Name of the module.

cmd_names - Array of names of exported commands.

cmd_pointers - Array of pointers to functions implementing commands
specified in cmd_names array.
Function Prototype:
int cmd_function (struct sip_msg* msg, char* paraml, char*
param?2);

The first parameter is sip_msg currently being processed. Remaining parame-
ters are parameters from the config file. If the function accepts only one param-
eter, param2 will be set to zero, if the function accepts no parameters, paraml
and param2 will be set to zero.

The function should return number > 0 if everything went OK and processing
of the message should contine. The function should return 0 if processing of
the message should be stopped. The function should return number < 0 on an
error.

param_no - Array of number of parameters of exported commands.

fixup_pointer - Array of pointers to fixup functions, each fixup function for
one exported command. If there is no fixup function for a particular exported
function, corresponding field in the array will contain zero.

Function Prototype:

int fixup_function (void** param, int param_no);

The first parameter is pointing to variable to be fixed. The second parameter is
order of the variable.

The function should return 0 if everything went OK and number < 0 on an
error.

cmd_no - Number of exported commands.

Chapter 7. The Module Interface

Important: cmd_names, cmd_pointers , param_no and fixup_pointer ar-
rays must have at least cmd_no elements ! (It might even Kill your cat if you fail to
fullfill this condition).

param_names - Array of names of exported parameters.

param_types - Array of types of parameters, each field of the array can be
either STR_PARAM or INT_PARAM (currently only two parameter types are
defined).

param_pointers - Array of pointers to variables, that hold values of the
parameters.

param_no - Number of exported parameters.

Important: param_names, param_types and param_pointers arrays must
have at least param_no elements ! (Remember the previous note about your cat
? The same might happen to your dog if you fail to fulfill the condition second time

.

init_f - Pointer to module’s initialization function, 0 if the module doesn’t
need initialization function.

Function Prototype:

int init_function (void);

The function should return 0 if everything went OK and number < 0 on an
error;

response_f - If a module is interested in seeing responses, it will provide
pointer to a function here. The function will be called when a response comes.
The field will contain 0 if the module doesn’t want to see responses.

Function Prototype:

int response_function (struct sip_msg* msQ);

The function accepts one parameter which is stucture representing the
response currently being processed.

The function should return 0 if the response should be dropped.

destroy_f - Destroy function. The function will be called when the server is
shutting down. Can be 0 if the module doesn’t need destroy function.

Function Prototype:

void destroy_function (void);

onbreak_f - On break function. The function will be called when processing
of a route statement was aborted. Can be 0 if module doesn’t need this function.

Function Prototype:

41

Chapter 7. The Module Interface

void onbreak_function (struct sip_msg* msQ);

The function accepts one parameter which is message currently being pro-
cessed.

init_child_f - Child initialization function. This is an additional initializa-

tion function. init_f will be called from the main process BEFORE the main
process forks children. init_child_f will be called from all children AFTER
the fork.

Per-child specific initialization can be done here. For example, each child can
open its own database connection in the function, and so on.

Function Prototype:

int child_init_function (int rank);

The function accepts one parameter, which is rank (starting from 0) of child
executing the function.

The function should return 0 if everything went OK and number < 0 on an
error.

Module Loading

42

Modules are compiled and stored as shared objects. Shared objects have usually
appendix “.so0”. Shared objects can be loaded at runtime.

When you instruct the server to load a module using loadmodule command in
the config file, it will call function load_module . The function will do the follow-

me:

It will try to open specified file using dlopen . For example if you write load-
module "/usr/lib/ser/modules/auth.so" in the config file, the server will try
to open file “/usr/lib/ser/modules/auth.so” using dlopen function.

If dlopen failed, the server will issue an error and abort.

As the next step, list of all previously loaded modules will be searched for
the same module. If such module is found, it means, that user is trying to load
the same module twice. In such case an warning will be issued and server will
abort.

The server will try to find pointer to “exports” symbol using disym in the
module. If that fails, server will issue an error and abort.

And as the last step, function register_module will register the module with
the server core and loading of the module is complete.

Function register_module registers a module with the server core. By registra-
tion we mean the following set of steps (see function register_module in file
sr_module.c for more details):

The function creates and initializes new instance of sr_module structure.
path field will be set to path of the module.
handle field will be set to handle previously retuned by dlopen .

Chapter 7. The Module Interface

« exports field will be set to pointer to module’s exports structure previously
obtained through disym in load_module function.

» As the last step, the newly created structure will be inserted into linked list of
all loaded modules and registration is complete.

Module Configuration

In addition to set of functions each module can export set of configuration vari-
ables. Value of a module’s configuration variable can be changed in the config file
using modparam function. Module configuration will be described in this section.

Function modparam

modparam function accepts three parameters:

» module name - Name of module as exported in name field of exports global
variable.

« variable name - Name of variable to be set - it must be one of names specified in
param_names field of exports variable of the module.

 wvalue - New value of the variable. There are two types of variables: string and
integer. If the last parameter (value) of modparam function is enclosed in quotes,
it is string paramater and server will try to find the corresponding variable
among string parameters only.

Otherwise it is integer parameter and server will try to find corresponding vari-
able among integer parameters only.

Function set_mod_param

When the server finds modparam function in the config file, it will call
set_mod_param function. The function can be found in modparam.c file. The
function will do the following:

« It tries to find corresponding variable using find_param_export function.

« Ifitis string parameter, a new copy of the string will be obtained using strdup
function and pointer to the copy will be stored in the variable.

If it is integer parameter, its value will be simply copied in the variable.

Function find_param_export

This function accepts 3 parameters:

» module - Name of module.
 parameter - Name of parameter to be found.

* type - Type of the parameter.

The function will search list of all modules until it finds module with given
name. Then it will search throught all module’s exported parameters until it finds
parameter with corresponding name and type. If such parameter was found,

43

Chapter 7. The Module Interface

pointer to variable holding the parameter’s value will be returned. If the func-
tion failed to find either module or parameter with given name and type then
zero will be returned.

Finding an Exported Function

This section describes how to find an exported function.

If you need to find exported function with given name and number of
parameters, find_export function is what you need. The function is defined in
sr_module.c file. The function accepts two parameters:

e name - Name of function to be found.

 param_no - Number of parameters of the function.

The function will search throught list of all loaded modules and in each module
through array of all exported functions until it finds function with given name
and number of parameters. If such exported function was found, find_exported
will return pointer to the function, otherwise zero will be returned.

Additional Functions

44

There are several additional functions defined in file sr_module.c . There func-
tions are mostly internal and shouldn’t be used directly by user. We will shortly
describe them here.

 register_builtin_modules - Some modules might be linked statically with
main executable, this is handy for debugging. This function will register all
such modules upon server startup.

« init_child - This function will call child-initialization function of all loaded
modules. The function will be called by the server core immediately after the
fork.

« find_module - The function accepts pointer to an exported function and num-
ber of parameters as parameters and returns pointer to corresponding module
that exported the function.

 destroy_modules - The function will call destroy function of all loaded mod-
ules. This function will be called by the server core upon shut down.

e init_modules - The function will call initialization function of all loaded mod-
ules. The function will be called by the server before the fork.

Chapter 8. The Database Interface

This is a generic database interface for modules that need to utilize a database.
The interface should be used by all modules that access database. The interface
will be independent of the underlying database server.

Note: If possible, use predefined macros if you need to access any structure at-
tributes.

For additional description, see comments in sources of mysqgl module.

If you want to see more complicated examples of how the API could be used, see
sources of dbexample, usrloc or auth modules.

Data types

There are several data types. All of them are defined in header files under db
subdirectory, a client must include db.h header file to be able to use them.

Type db_con_t

This type represents a database connection, all database functions (described be-
low) use a variable of this type as one argument. In other words, variable of
db_con_t type serves as a handle for a particular database connection.

typedef struct db_con {

char* table; /* Default table to use */

void* con; /* Database connection */

void* res; /* Result of previous operation */

void* row; /* Internal, not for public use */

int connected; /* 1 if connection is established */
} db_con_t;

There are no macros defined for db_con_t type.

Type db_key t

This type represents a database key. Every time you need to specify a key value,
this type should be used. In fact, this type is identical to const char*.

typedef const char* db_key t;

There are no macros defined (they are not needed).

Type db_type_t

Each cell in a database table can be of a different type. To distinguish among
these types, the db_type_t enumeration is used. Every value of the enumeration
represents one datatype that is recognized by the database API. This enumeration
is used in conjunction with db_type_t. For more information, see the next section.

typedef enum {
DB_INT, /* Integer number */
DB_DOUBLE, /* Decimal number */
DB_STRING, [* String */

DB_STR, /* str structure */

DB_DATETIME /* Date and time */

DB_BLOB [* Binary large object */
} db_type_t;

There are no macros defined.

45

Chapter 8. The Database Interface

Type db_val t

46

This structure represents a value in the database. Several datatypes are recog-
nized and converted by the database API:

DB_INT - Value in the database represents an integer number.
DB_DOUBLE - Value in the database represents a decimal number.
DB_STRING - Value in the database represents a string.

DB_STR - Value in the database represents a string.
DB_DATETIME - Value in the database represents date and time.
DB_BLOB - Value in the database represents binary large object.

These datatypes are automatically recognized, converted from internal database
representation and stored in a variable of corresponding type.

typedef struct db_val {

db_type_t type; /* Type of the value */

int nul; /* NULL flag */

union {
int int_val; [* Integer value */
double double_val; /* Double value */
time_t time_val; /* Unix time_t value */
const char* string_val, /* Zero terminated string */
str str_val; [* str structure */
str blob_val; [* Structure describing blob */

} val;

} db_val_t;

Note: All macros expect pinter to db_val_t variable as a parameter.

VAL_TYPE(value) Macro.
Use this macro if you need to set/get the type of the value

Example 8-1. VAL_TYPE Macro

VAL TYPE(val) = DB_INT:
if (VAL_TYPE(val) == DB_FLOAT)

VAL_NULL(value) Macro.

Use this macro if you need to set/get the null flag. Non-zero flag means that the
corresponding cell in the database contained no data (NULL value in MySQL
terminology).

Example 8-2. VAL_NULL Macro

if (VAL NULL(val) == 1) {
printf("The cell is NULL");

VAL_INT(value) Macro.

Use this macro if you need to access integer value in db_val_t structure.

Chapter 8. The Database Interface

Example 8-3. VAL_INT Macro

if (VAL_TYPE(val) == DB_INT) {
printf("%d", VAL_INT(val));

VAL_DOUBLE(value) Macro.

Use this macro if you need to access double value in the db_val_t structure.

Example 8-4. VAL_DOUBLE Macro

if (VAL_TYPE(val) == DB_DOUBLE) {
printf("%f", VAL_DOUBLE(val));

VAL_TIME(value) Macro.

Use this macro if you need to access time_t value in db_val_t structure.

Example 8-5. VAL_TIME Macro

fi}ne_t tim;

if (VAL_TYPE(val) == DB_DATETIME) {
tim = VAL_TIME(val);

}

VAL_STRING(value) Macro.

Use this macro if you need to access string value in db_val_t structure.

Example 8-6. VAL_STRING Macro

if (VAL_TYPE(val) == DB_STRING) {
printf("%s", VAL_STRING(val));

VAL_STR(value) Macro.

Use this macro if you need to access str structure in db_val_t structure.

Example 8-7. VAL_STR Macro

if (VAL TYPE(val) == DB_STR) {
printf("%.*s", VAL_STR(val).len, VAL_STR(val).s);

VAL_BLOB(value) Macro.

Use this macro if you need to access blob value in db_val_t structure.

47

Chapter 8. The Database Interface

Example 8-8. VAL_STR Macro

if (VAL_TYPE(val) == DB_BLOB) {
printf("%.*s", VAL_BLOB(val).len, VAL_BLOB(val).s);

Type db_row_t

This type represents one row in a database table. In other words, the row is an
array of db_val_t variables, where each db_val_t variable represents exactly one

cell in the table.
typedef struct db_row {

db_val_t* values; /* Array of values in the row */

int n; /* Number of values in the row */
} db_val_t;

e ROW_VALUES(row)Macro.

Use this macro to get pointer to array of db_val_t structures.

Example 8-9. ROW_VALUES Macro

db_val_t* v = ROW_VALUES(row);
if (VAL TYPE(v) == DB_INT)

* ROW_N(row) Macro.

Use this macro to get number of cells in a row.

Example 8-10. ROW_N Macro

db_val_t* val = ROW_VALUES(row);
for(i = 0; i < ROW_N(row); i++) {
switch(VAL_TYPE(val + i)) {
case DB_INT: ...; break;
case DB_DOUBLE: ...; break;

Type db_res t
This type represents a result returned by db_query function (see below). The re-
sult can consist of zero or more rows (see db_row_t description).

Note: A variable of type db_res_t returned by db_query function uses dynamically
allocated memory, don’t forget to call db_free_query if you don’t need the variable
anymore. You will encounter memory leaks if you fail to do this !

48

Chapter 8. The Database Interface

In addition to zero or more rows, each db_res_t object contains also an array of
db_key_t objects. The objects represent keys (names of columns).

typedef struct db_res {

struct {
db_key t* keys; [* Array of column names */
db_type_t* types; /* Array of column types */
int n; /* Number of columns */

} col;

struct db_row* rows; /* Array of rows */

int n; /* Number of rows */

} db_res_t;

* RES_NAMES(res) Macro.

Use this macro if you want to obtain pointer to an array of cell names.

Example 8-11. RES_NAMES Macro

d"b_key_t* column_names = ROW_NAMES(row);

e RES_COL_N(res) Macro.

Use this macro if you want to get the number of columns in the result.

Example 8-12. RES_COL_N Macro

|nt ncol = RES_COL_N(res);
fori = 0; i < ncol; i++) {

/* do something with the column */
}

e RES_ROWS(res) Macro.

Use this macro if you need to obtain pointer to array of rows.

Example 8-13. RES_ROWS Macro
ab_row_t* rows = RES_ROWS(res);

« RES_ROW_N(res) Macro.

Use this macro if you need to obtain the number of rows in the result.

Example 8-14. RES_ROW_N Macro

int n = RES_ROW_N(res);

49

Chapter 8. The Database Interface

Functions

There are several functions that implement the database API logic. All function
names start with db_ prefix, except bind_dbmod . bind_dbmod is implemented in
db.c file, all other functions are implemented in a standalone module. Detailed-
description of functions follows.

bind_dbmod

db_init

db_close

50

This function is special, it’s only purpose is to call find_export ~ function in the
SER core and find addresses of all other functions (starting with db_ prefix). This
function MUST be called FIRST !

int bind_dbmod (void);

The function takes no parameters.

The function returns 0 if it was able to find addresses of all other functions, oth-
erwise value < 0 is returned.

Use this function to initialize the database API and open a new database connec-
tion. This function must be called after bind_dbmod but before any other function
is called.

db_con_t* db_init (const char* _sql_url),

The function takes one parameter, the parameter must contain database connec-
tion URL. The URL is of the form sql:/ /username:password@host:port/database
where:

+ username - Username to use when logging into database (optional).
* password - Password if it was set (optional).

e host - Hosname or IP address of the host where database server lives (manda-
tory).
e port - Port number of the server if the port differs from default value (optional).

database - If the database server supports multiple databases, you must specify
name of the database (optional).

The function returns pointer to db_con_t* representing the connection if it was
successful, otherwise 0 is returned.

The function closes previously open connection and frees all previously allocated
memory. The function db_close must be the very last function called.

void db_close (db_con_t* _h);

The function takes one parameter, this parameter is a pointer to db_con_t struc-
ture representing database connection that should be closed.

Function doesn’t return anything.

Chapter 8. The Database Interface

db_query
This function implements SELECT SQL directive.

int db_query (db_con_t* _h, db_key t* _k, db_val_t* _v, db_key t*
_Cc,int _n,int _nc, db_key t* _0, db_res_t** r);

The function takes 8 parameters:
e _h - Database connection handle.

e _k - Array of column names that will be compared and their values must
match.

e _v - Array of values, columns specified in _k parameter must match these
values.

e _c- Array of column names that you are interested in.

» _n - Number of key-value pairs to match in _k and _v parameters.
e _nc - Number of columns in _c parameter.

» _o0-Order by.

» _r- Address of variable where pointer to the result will be stored.

If _k and _v parameters are NULL and _n is zero, you will get the whole table. If
_cis NULL and _nc is zero, you will get all table columns in the result

_r will point to a dynamically allocated structure, it is neccessary to call
db_free_query function once you are finished with the result.

Strings in the result are not duplicated, they will be discarded if you call
db_free_query, make a copy yourself if you need to keep it after db_free_query.

You must call db_free_query BEFORE you can call db_query again !

The function returns 0 if everything is OK, otherwise value < 0 is returned.

db_free_query

This function frees all memory allocated previously in db_query , it is neccessary
to call this function for a db_res_t structure if you don’t need the structure any-
more. You must call this function BEFORE you call db_query again !

int db_free_query (db_con_t* _h, db_res_t* _r);

The function takes 2 parameters:
e _h - Database connection handle.

e _r - Pointer to db_res_t structure to destroy.

The function returns 0 if everything is OK, otherwise the function returns value
<0.

db_insert
This function implements INSERT SQL directive, you can insert one or more rows
in a table using this function.

int db_insert (db_con t* _h, db_key t* _k, db_val t* _v, int _n);

51

Chapter 8. The Database Interface

The function takes 4 parameters:

e _h - Database connection handle.

e _k - Array of keys (column names).

* _V - Array of values for keys specified in _k parameter.

e _n - Number of keys-value pairs int _k and _v parameters.

The function returns 0 if everything is OK, otherwise the function returns value
<0.

db_delete

This function implements DELETE SQL directive, it is possible to delete one or
more rows from a table.

int db_delete (db_con_t* _h, db_key t* _k, db_val_t* _v, int _n);

The function takes 4 parameters:

o _h - Database connection handle.

» _k - Array of keys (column names) that will be matched.

e _V - Array of values that the row must match to be deleted.

« _n - Number of keys-value parameters in _k and _v parameters.

If _kis NULL and _v is NULL and _n is zero, all rows are deleted (table will be
empty).

The function returns 0 if everything is OK, otherwise the function returns value
<0.

db_update

52

The function implements UPDATE SQL directive. It is possible to modify one or
more rows in a table using this function.

int db_update (db_con_t* _h, db_key t* _k, db_val_t* _v, db_key t*
_uk, db_val_t* _uv, int _n,int _un);

The function takes 7 parameters:

e _h - Database connection handle.

e _Kk - Array of keys (column names) that will be matched.

¢ _V - Array of values that the row must match to be modified.
e _uk - Array of keys (column names) that will be modified.

e _uv - New values for keys specified in _k parameter.

« _n - Number of key-value pairs in _k and _v parameters.

¢ _un - Number of key-value pairs in _uk and _uv parameters.

The function returns 0 if everything is OK, otherwise the function returns value
<0.

Chapter 8. The Database Interface

db_use_table

The function db_use_table takes a table name and stores it in db_con_t structure.
All subsequent operations (insert, delete, update, query) are performed on that
table.

int db_use-table (db_con_t* _h, cons char* _t);

The function takes 2 parameters:
e _h - Database connection handle.

e _t -Table name.

The function returns 0 if everything is OK, otherwise the function returns value
<0.

53

Chapter 8. The Database Interface

54

Chapter 9. Basic Modules

Digest Authentication

The module exports functions needed for digest authentication.

The module depends on:

» mysql - Used as interface to database.

 sl-Used for stateless replies.

Exported Parameters

e db_url -Database url string in form “sql:/ / <user>:<pass>@host/database”.
Type: string
Default: “sql:/ /serro:47serrol1@localhost/ser”

« user_column - Name of column containing usernames in subscriber table.
Type: string

Default: “user_id”

 realm_column - Name of column containing realm in subscriber table.
Type: string

Default: “realm”

 password_column - Name of column containing (plaintext passwords)/(hal
strings) if calculate_hal parameter is set to true/false.

Type: string
Default: “hal”

e password_column_2 - The parameter can be used if and only if
USER_DOMAIN_HACK macro is set in defs.h header file. The column of this
name contains alternate hal strings calculated from username containing also
domain, for example username="jan@iptel.org". This hack is neccessary for
some broken user agents. The parameter has no meaning if "calculate_hal" is
set to true.

Type: string
Default: “halb”

+ secret - Nonce secret phrase.
Type: string
Default: Randomly generated string.

« group_table - Name of table containing group definitions.

Type: string
Default: “grp”

55

Chapter 9. Basic Modules

group_user_column - Name of column containing usernames in group table.
Type: string

Default: “user”

group_group_column - Name of column containing groups in group table.
Type: string
Default: “grp”

calculate_hal - If set to true, auth module assumes that “password_column”
contains plaintext passwords and hal string will be calculated at runtime. If set
to false, "password_column" must contain precalculated hal strings.

Type: integer
Default: false

nonce_expire - Every nonce is valid only for a limited amount of time. This
parameter specifies nonce validity interval in seconds.

Type: integer

Default: 300

retry_count - This parameter specifies how many times a user is allowed to

retry authentication with incorrect credentials. After that the user will receive
403 Forbidden and must retry with different credentials. This should prevent
DoS attacks from misconfigured user agents which try to authenticate with
incorrect password again and again and again.

Type: integer
Default: 5

Exported Functions

56

int www_authorize (struct sip_msg* msg, char* realm , char*

table);
The function checks credentials in Authorization header field.
realm - Realm string

table - Subscriber table name

Example 9-1. www_authorize

if ('www_authorize("iptel.org", "subscriber")) {
www_challenge(“iptel.org", "0");

break;
}
int proxy_authorize (struct sip_msg* msg, char* realm , char*
table);

The function checks credentials in Proxy-Authorization header field.

realm - Realm string

Chapter 9. Basic Modules
table - Subscriber table name

Example 9-2. proxy_authorize

if ('proxy_authorize("iptel.org", "subscriber")) {
proxy_challenge(“iptel.org", "0");
break;

int www_challenge (struct sip_msg* msg, char* realm , char*
qop);

Challenges a user agent using WWW-Authenticate header field. The second
parameter specifies if qop parameter (according to rfc2617) should be used or
not. (Turning off is useful primarly to make UAC happy, which have a broken
gop implementation, particularly M$ Messenger 4.6).

realm - Realm string

qop - Qop string, “1” means use qop parameter “0” means do not use qop
parameter.

int proxy_challenge (struct sip_msg* msg, char* realm , char*
qop);

Challenges a user agent using Proxy-Authenticate header field. The second pa-
rameter specifies if qop parameter (according to rfc2617) should be used or not.
(Turning off is useful primarly to make UAC happy, which have a broken qop
implementation, particularly M$ Messenger 4.6).

realm - Realm string

qop - Qop string, “1” means use qop parameter “0” means do not use qop
parameter.

int is_user (struct sip_msg* msg, char* username, char* s);

Checks if the specified username and matches the username in credentials. Call
after *_authorize, otherwise an error will be issued.

username - Username string.
s - Not used.

int is_in_group (struct sip_msg* msg, char* group , char* s);

Checks if the user specified in credentials is member of given group Call after
*_authorize, otherwise an error will be issued.

group - Group name.
s - Not used.

int check to (struct sip_msg* msg, char* sl, char* s2);

Checks if the username given in credentials and username in To header field
are equal Call after *_authorize, otherwise an error will be issued.

s1 - Not used.
s2 - Not used.

57

Chapter 9. Basic Modules

Example 9-3. check_to

if (method=="REGISTER" & proxy_authorize("iptel.org", "subscriber") {
if (Icheck_to) {
sl_send_reply("403", "cheating: user!=to");
break;

int check_from (struct sip_msg* msg, char* sl1, char* s2);

Checks if the username given in credentials and username in From header field
are equal. Call after *_authorize, otherwise an error will be issued.

s1 - Not used.
s2 - Not used.

int consume_credentials (struct sip_msg* msg, char* sl, char*
s2);

Removes previously authorized credentials from the message. The function
must be called after {www,proxy]_authorize.

s1 - Not used.
s2 - Not used.

int is_user_in (struct sip_msg* msg, char* hf, char* group);
Checks, if the user is in specified table.

hf - Use username in this header field, the following values are recognized:

o “From” - Extract username from From URI.
o “To” - Extract username from To URI.
+ “Request-URI"” - Extract username from Request-URIL

» “credentials” - Use username digest parameter.

group - Group name.

Max Forwards

Implements all the operations regarding MAX-Forward header, like adding it (if
not present) or decrementing and checking the value of the existent one.

Module dependencies: none.

Exported Parameters

None.

58

Chapter 9. Basic Modules

Exported Functions

int mf_process_maxfwd_header (struct sip_msg* msg, char* max_value ,
char* s);

If no Max-Forward header is present in the received request, a header will be
added having the original value equal with "max_value". An OK code is returned
by the function.

If a Max-Forward header is already present, its value will be decremented. If after
this operation its value will be positive non-zero, an OK code will be returned.
Otherwise (for a zero value) an error code will be returned. Note that an error
code will be also returned if the SIP message couldn’t be parsed or if the Max-
Forwrd header’s body invalid (non numerical string or negative numerical value)

Parameter s is not used.

Registrar
The module contains REGISTER processing logic.

The module depends on:

 usrloc - User location module.

« sl - Used for stateless replies.

Exported Parameters

* default_expires - If the processed message contains neither Expires HFs nor
expires contact parameters, this value will be used for newly created usrloc
records. The parameter contains number of second to expire (for example use
3600 for one hour).

Type: integer
Default: 3600

» default_q - The parameter represents default q value for new contacts. Be-
cause ser doesn’t support float parameter types, the value in the parameter is
divided by 100 and stored as float. For example, if you want default_q to be
0.38, use value 38 here.

Type: integer
Default: 0

« append_branches - The parameter controls how lookup function processes
multiple contacts. If there are multiple contacts for the given username in us-
rloc and this parametr is set to 1, Request-URI will be overwritten with the
highest-q rated contact and the rest will be appended to sip_msg structure and
can be later used by tm for forking. If the parameter is set to 0, only Request-
URI will be overwritten with the highest-q rated contact and the rest will be
left unprocessed.

Type: integer
Default: 1

59

Chapter 9. Basic Modules

Exported Functions

int save (struct sip_msg* msg, char* table , char* s);

The function processes a REGISTER message. It can add, remove or modify
usrloc records depending on Contact and Expires HFs in the REGISTER mes-
sage. On success, 200 OK will be returned listing all contacts that are currently
in usrloc. On an error, error message will be send with a short description in
reason phrase.

table - Table name where contacts should be stored.
s - Not used.

int lookup (struct sip_msg* msg, char* table , char* s);

The functions extracts username from Request-URI and tries to find all contacts
for the username in usrloc. If there are no such contacts, -1 will be returned. If
there are such contacts, Request-URI will be overwritten with the contact that
has the highest q value and optionally the rest will be appended to the message
(depending on append_branches parameter value).

table - Name of table that should be used for the lookup.
s - Not used.

Record-Routing

Record Routing module.

The module depends on: None.

Exported Parameters

None.

Exported Functions

int rewriteFromRoute (Struct sip_msg* msg, char* sl, char*
s2);

If there are any Route HFs in the message, the function takes the first one,
rewrites Request-URI with it’s value and removes the first URI from Route
HFs.

s1 - Not used.
s2 - Not used.

int addRecordRoute (struct sip_msg* msg, char* sl, char* s2);

The function adds a new Record-Route header field. The header field will be
inserted in the message before any other Record-Route header fields.

s1 - Not used.
s2 - Not used.

60

Chapter 9. Basic Modules

Stateless Replies

The SL module provide possibilities to send stateless replies for the current re-
quest. Additional, a filter function is available for checking the ACK requests
generated by sending a SL reply to a INVITE req. Also, offers the possibility to
send explanatory SL replies in case of an internal error.

For the SL module to be able to recognize the ACKs generated by INVITE’s
replies sent by itself, all the sent replies will have attached to TO header a "tag"
param. having a unique value (that was random generated at ser startup). When
an ACK is received, the TO tag param tag is checked if corresponds - all UAS
MUST copy the TO tag from replies into ACK requests! TO speed up the filtering
process, the module uses a timeout mechanism. When a reply is sent, a timer us
set. As time as the timer is valid, The incoming ACK requests will be checked us-
ing TO tag value Once the timer expires, all the ACK are let through - a long time
passed till it sent a reply, so it does not expect any ACK that have to be blocked.

Exported Parameters

None.

Exported Functions

int sl _send reply (struct sip_msg* msg, char* code, char*
text_reason);

For the current request, a reply is sent back having the given code and text rea-
son. The reply is sent stateless, totally independent of the Transaction module
and with no retranssmision for the INVITE's replies.

code - Reply code to be used.

text_reason - Reason phrase to be used.

int sl filter_ACK (struct sip_msg* msg, char* sl, char* s2);

Identifies and blocks the ACK requests generated by INVITE’s replies sent us-
ing the sl_send_reply() or sl_send_error() functions.

s1 - Not used.
s2 - Not used.

int sl_reply_error (struct sip_msg* msg, char* sl, char* s2);

Identifies and blocks the ACK requests generated by INVITE’s replies sent us-
ing the sl_send_reply() or sl_send_error() functions.

s1 - Not used.
s2 - Not used.

61

Chapter 9. Basic Modules

Transaction Module

The module implements logic necessary to manage SIP transactions.
The module depends on: None.

TM Module enables stateful processing of SIP transactions. The main use of state-
ful logic, which is costly in terms of memory and CPU, is some services inher-
ently need state. For example, transaction-based accounting (module acc) needs
to process transaction state as opposed to individual messages, and any kinds of
forking must be implemented statefuly. Other use of stateful processing is it trad-
ing CPU caused by retransmission processing for memory. That makes however
only sense if CPU consumption per request is huge. For example, if you want
to avoid costly DNS resolution for every retransmission of a request to an unre-
solveable destination, use stateful mode. Then, only the initial message burdens
server by DNS queries, subsequent retranmissions will be dropped and will not
result in more processes blocked by DNS resolution. The price is more memory
consumption and higher processing latency.

From user’s perspective, there are two major functions : t_relay and t_relay_to.
Both setup transaction state, absorb retransmissions from upstream, generate
downstream retransmissions and correlate replies to requests. t_relay forwards to
current uri (be it original request’s uri or a uri changed by some of uri-modifying
functions, such as sethost). t_relay_to forwards to a specific address.

In general, if TM is used, it copies clones of received SIP messages in shared
memory. That costs the memory and also CPU time (memcpys, lookups, shmem
locks, etc.) Note that non-TM functions operate over the received message in pri-
vate memory, that means that any core operations will have no effect on statefuly
processed messages after creating the transactional state. For example, calling
addRecordRoute *after* t_relay is pretty useless, as the RR is added to privately
held message whereas its TM clone is being forwarded.

TM is quite big and uneasy to programm -- lot of mutexes, shared memory access,
malloc & free, timers -- you really need to be careful when you do anything.
To simplify TM programming, there is the instrument of callbacks. The callback
mechanisms allow programmers to register their functions to specific event. See
t_hooks.h for a list of possible events.

Other things programmers may want to know is UAC -- it is a very simplictic
code which allows you to generate your own transactions. Particularly useful for
things like NOTIFYs or IM gateways. The UAC takes care of all the transaction
machinery: retransmissions , FR timeouts, forking, etc. See t_uac prototype in
uac.h for more details. Who wants to see the transaction result may register for a
callback.

External Usage of TM

62

There are applications which would like to generate SIP transactions without
too big onvolvement in SIP stack, transaction management, etc. An example of
such an application is sending instant messages from a website. To address
needs of such apps, SER accepts requests for new transactions via fifo pipes too.
If you want to enable this feature, statrt FIFO server by configuration option
fifo="/tmp/filename” Then, an application can easily launch a new transaction
by writing a transaction request to this named pipe. The request must follow
very simple format, which is

tuac:l <file_name >]\n
<method >\n

<dst uri >\n
<CR_separated_headers >\n
<body >\n

\n

\n

(Filename is to where a report will be dumped. ser assumes /tmp as file’s direc-
tory.)

Chapter 9. Basic Modules

A convenience library fifo_uac.c implements this simple functionality. Note the
the request write must be atomic, otherwise the request might get intermixes with
writes from other writers. You can easily use it via Unix command-line tools, see
the following example:

Example 9-4. UAC

[iiri@bat jiri]$ cat > [tmpl/fifo
‘t_uac:xxx

MESSAGE

sip:mrx@iptel.org

header:value

foo:bar

bznk:hjhjk

p_header: p_value

body body body
yet body
end of body

Or use an example file and call cat test/transaction.fifo > /tmp/fifo

Exported Parameters

fr_timer - Timer which hits if no final reply for a request or ACK for a nega-
tive INVITE reply arrives.

Type: integer (seconds)
Default: 30

fr_inv_timer - Timer which hits if no final reply for an INVITE arrives after
a provisional message was received.

Type: integer (seconds)
Default: 120

wt_timer - Time for which a transaction stays in memory to absorb delayed
messages after it completed; also, when this timer hits, retransmission of lo-
cal cancels is stopped (a puristic but complex behviour would be not to enter
wait state until local branches are finished by a final reply or FR timer -- we
simplified)

Type: integer (seconds)
Default: 5

delete_timer - Time after which a to-be-deleted transaction currently ref-ed
by a process will be tried to be deleted again.

Type: integer (seconds)
Default: 2

retr_timerlpl, 2, 3 - Retransmission period.
Type: integer (seconds)
Default: RETR_T1=1, 2*RETR_T1, 4*RETR_T1

retr_timer2 - Maximum retransmission period.

Type: integer (seconds)

63

Chapter 9. Basic Modules

Default: RETR_T2=4

noisy_ctimer - If set, on FR timer INVITE transactions will be explicitly can-

celled if possible, silently dropped otherwise; preferably, it is turned off to al-
low very long ringing; this behaviour is overridden if a request is forked, or
some functionality explicitly turned it off for a transaction (like acc does to
avoid unaccounted transactions due to expired timer).

Type: integer (boolean)
Default: 0 (false)

Exported Functions

64

int trelay (struct sip_msg* msg, char* s1, char* s2);

int trelay to (struct sip_msg* msg, char* ip_address , char*

port_number);

Relay a message statefuly to a fixed destination; this along with t_relay is the
function most users want to use -- all other are mostly for programming; pro-
grammers interested in writing TM logic should review how t_relay is imple-
mented in tm.c and how TM callbacks work.

ip_address - IP address of the destination.

port_number - Port of the destination.

Example 9-5. t_relay_to

if ('t_relay_to("1.2.3.4", "5060")) {
sl_reply_error();
break;

Relay a message statefuly to destination indicated in current URI; (if the orig-
inal URI was rewritten by UsrLoc, RR, strip/prefix, etc., the new URI will be
taken); returns a negative value on failure -- you may still want to send a neg-
ative reply upstream statelessly not to leave upstream UAC in lurch.

s1 - Not used.
s2 - Not used.

Example 9-6. t_relay

if ('t_relay() {
sl_reply_error();

break;
%
int t on_negative (struct sip_msg* msg, char* reply route
char* s);

Sets reply routing block, to which control is passed after a transaction
completed with a negative result but before sending a final reply; In the
refered block, you can either start a new branch (good for services such as
forward_on_no_reply) or send a final reply on your own (good for example
for message silo, which received a negative reply from upstream and wants to

Chapter 9. Basic Modules

tell upstream "202 I will take care of it"); Note that the set of command which
are useable within reply_routes is strictly limited to rewriting URI, initiating
new branches, logging, and sending "unsafe’ replies (t_reply_unsafe). Any
other commands may result in unpredictable behaviour and possible server
failure. Note that whenever reply_route is entered, uri is reset to value which
it had on relaying. If it temporarily changed during a reply_route processing,
subsequent reply_route will ignore the changed value and use again the
original one.

reply_route - Reply routing block.
s - Not used.

Example 9-7. t_on_negative

route {
t_on_negative("1");
t_relay();

} reply_route[1] {
revert_uri();
setuser("voicemail");
append_branch();

int t_newtran (struct sip_msg* msg, char* sl, char* s2);

Creates a new transaction, returns a negative value on error; this is the only
way a script can add a new transaction in an atomic way; typically, it is used to
deploy a UAS

s1 - Not used.
s2 - Not used.

Example 9-8. t_newtran

if (t_newtran()) {
log("UAS logic");
t_reply("999","hello");
} else sl_reply_error();

int treply (struct sip_msg* msg, char* code, char*
reason_phrase);

Sends a stateful reply after a transaction has been established; see t_newtran
for usage; note: never use t_reply from within reply_route ... always use
t_reply_unsafe.

code - Code of the response.

reason_phrase - Reason phrase of the response.

int t lookup_request (struct sip_msg* msg, char* sl1, char*
s2);

Checks if a transaction exists; returns a positive value if so, negative otherwise;
most likely you will not want to use it, as a typicall application of a looku-
up is to introduce a new transaction if none was found; however this is safely
(atomically) done using t_newtran.

s1 - Not used.
s2 - Not used.

65

Chapter 9. Basic Modules

int t_retransmit_reply (struct sip_msg* msg, char* sl1, char*
s2);
Retransmits a reply sent previously by UAS transaction.
s1 - Not used.
s2 - Not used.
int t_release (struct sip_msg* msg, char* sl, char* s2);

Remove transaction from memory (it will be first put on a wait timer to absorb
delayed messages).

s1 - Not used.
s2 - Not used.

int t forward_noack (struct sip_msg* msg, char* ip, char*
port);

Mainly for internal -- forward a non-ACK request statefuly.
ip - IP address.

port - Port number.

int register_tmchb (struct sip_msg* msg, char* cb_type , char*
cb_func);

For programmatic use only -- register a function to be called back on an event;
see t_hooks.h for more details.

cb_type - Callback type.

cb_func - Callback function.

int load_tm (struct sip_msg* msg, char* import_structure ,
char* s);

For programmatic use only -- import exported TM functions; see the acc mod-
ule for an example of use.

import_structure - Structure where pointers to tm functions will be stored.
s - Not used.
int treply unsafe (struct sip_msg* msg, char* code, char*

reason_phrase);

Sends a stateful reply after a transaction has been established; it can only be
used from reply processing; using it from regular processing will introduce er-
roneous conditions; using t_reply from reply_processing will introduce a dead-
lock.

code - Code of the reply.

reason_phrase - Reason phrase of the reply.

66

Chapter 9. Basic Modules

Known Issues

» Need to revisit profiling again.

» Review whether there is not potential for to-tag rewriting and ACK matching.
» We don’t have authentication merging on forking.

« Branch tid is not used yet.

« local ACK/CANCELSs copy'n’pastes Route and ignores deleted Routes

» 6xx should be delayed.

¢ Possibly, performance could be improved by not parsing non-INVITEs, as they
do not be replied with 100, and do not result in ACK/CANCELSs, and other
things which take parsing. However, we need to rethink whether we don’t
need parsed headers later for something else. Remember, when we now con-
server a request in sh_mem, we can’t apply any pkg_mem operations to it any
more. (that might be redesigned too).

« t_replicate should be done more cleanly -- Vias, Routes, etc. should be removed
from a message prior to replicating it.

* SNMP support.

» Lookup fails to recognize subsequent requests which have additional leading
spaces in header field values.

» Make UAC session-aware (as opposed to just transaction aware) -- needed for
keeing SUB-NOT dialog state, etc. Currently, there are only place-holders for
inin TM.

« Places labeled with "HACK" strongly deserve beautification.

User Location Module

Support for location of users.

Module depends on: Optionaly mysql (if configured for persistence)

Important: Usrloc is convenient module only. It's functions cannot be called from
scripts directly (hence the ~ at the beginning) but are used by registrar module in-
ternally. This module will be utilized by more modules in the future and therefore it is
standalone. Use registrar module functions if you need usrloc support in your scripts.

Exported Parameters

+ user_col -Name of column containing usernames.
Type: string

Default: “user”

« contact_col - Name of column containing contacts.
Type: string

Default: “contact”

« expires_col - Name of column containing expires.
Type: string

Default: “expires”

67

Chapter 9. Basic Modules

68

g_col - Name of column containing q values.
Type: string
Default: “q”

callid_col - Name of column containing callids.
Type: string
Default: “callid”

cseq_col - Name of column containing cseq numbers.
Type: string

Default: “cseq”

method_col - Name of column containing supported methods.
Type: string
Default: “method”

db_url - URL of the database that should be used.
Type: string
Default: “sql:/ /ser:heslo@localhost/ser”

timer_interval - Number of seconds between two timer runs. The mod-
ule uses timer to delete expired contacts, synchronize with database and other
tasks, that need to be run periodically.

Type: integer
Default: 60 seconds

db_mode - The usrloc module can utilize database for persistent contact stor-
age. If you use database, your contacts will survive machine restarts or sw
crashes. The disadvantage is that accessing database can be very time consum-
ing. Therefore, usrloc module implements three database accessing modes:

+ 0 - This disables database completely. Only memory will be used. Contacts
will not survive restart. Use this value if you need a really fast usrloc and
contact persistence is not necessarry or is provided by other means.

o 1- Write-Through scheme. All changes to usrloc are immediately reflected in
database too. This is very slow, but very reliable. Use this scheme if speed is
not your priority but need to make sure that no registered contacts will be
lost during crash or reboot.

+ 2 - Write-Back scheme. This is a combination of previous two schemes. All
changes are made to memory and database synchronization is done in the
timer. The timer deletes all expired contacts and flushes all modified or new
contacts to database. Use this scheme if you encounter high-load peaks and
want them to process as fast as possible. The mode will not help at all if
the load is high all the time. Also, latency of this mode is much lower than
latency of mode 1, but slightly higher than latency of mode 0.

Type: integer
Default: 0

Chapter 9. Basic Modules

Warning

In case of crash or restart contacts that are in memory only
and haven’t been flushed yet will get lost. If you want minimize
the risk, use shorter timer interval.

Exported Functions

int ~ul_register_domain (const char* name);

The function registers a new domain. Domain is just another name for table
used in registrar. The function is called from fixups in registrar. It gets name of
the domain as a parameter and returns pointer to a new domain structure. The
fixup than "fixes’ the parametr in registrar so that it will pass the pointer instead
of the name every time save() or lookup() is called. Some usrloc functions get
the pointer as parameter when called. For more details see implementation of
save function in registrar.

name - Name of the domain (also called table) to be registered.

int ~ul_insert_urecord (udomain_t* domain , str* aor ,
urecord_t** rec);

The function creates a new record structure and inserts it in the specified do-
main. The record is structure that contains all the contacts for belonging to the
specified username.

domain - Pointer to domain returned by ul_register_udomain.

aor - Address of Record (aka username) of the new record (at this time the
record will contain no contacts yet).

rec - The newly created record structure.

int ~ul_delete_urecord (udomain_t* domain, str* aor);
The function deletes all the contacts bound with the given Address Of Record.
domain - Pointer to domain returned by ul_register_udomain.

aor - Address of record (aka username) of the record, that should be deleted.

int ~ul_get urecord (udomain_t* domain, str* aor);
The function returns pointer to record with given Address of Record.
domain - Pointer to domain returned by ul_register_udomain.

aor - Address of Record of request record.

int ~ul_lock_udomain (udomain_t* domain);

The function lock the specified domain, it means, that no other processes will
be able to access during the time. This prevents race conditions. Scope of the
lock is the specified domain, that means, that multiple domain can be accessed
simultaneously, they don’t block each other.

domain - Domain to be locked.

69

Chapter 9. Basic Modules

int ~ul_unlock_udomain (udomain_t* domain);
Unlock the specified domain previously locked by ul_lock_udomain.

domain - Domain to be unlocked.

int ~ul_release_urecord (urecord_t* record);

Do some sanity checks - if all contacts have been removed, delete the entire
record structure.

record - Record to be released.

int ~ul_insert_ucontact (urecord_t* record , str* contact
time_t expires , float g, str* calid , int cseq,
ucontact_t* cont);

The function inserts a new contact in the given record with specified parame-
ters.

record - Record in which the contact should be inserted.

contact - Contact URL.

expires - Expires of the contact in absolute value.

q - q value of the contact.

callid - Call-ID of the REGISTER message that contained the contact.
cseq - CSeq of the REGISTER message that contained the contact.

cont - Pointer to newly created structure.

int ~ul_delete_ucontact (urecord_t* record , ucontact_t*
contact);

The function deletes given contact from record.
record - Record from which the contact should be removed.

contact - Contact to be deleted.

int ~ul_get_ucontact (urecord_t* record , str* contact);

The function tries to find contact with given Contact URI and returns pointer
to structure representing the contact.

record - Record to be searched for the contact.

contact - URI of the request contact.

int ~ul_update_ucontact (ucontact_t* contact , time t expires ,
float q, str* callid , int cseq);

The function updates contact with new values.
contact - Contact to be updated.

expires - New expires value.

q - New q value.

calid - New Call-ID.

70

Chapter 9. Basic Modules

cseq - New CSeq.

71

Chapter 9. Basic Modules

72

	SIP Express Router v0.8.8 Developer's Guide
	Table of Contents
	Chapter 1. The Server Startup
	Installation Of New Signal Handlers
	Processing Command Line Parameters
	Parser Initialization
	Malloc Initialization
	Timer Initialization
	FIFO Initialization
	Builtin Module Initialization
	Server Configuration
	Lexical Analysis
	Syntactical Analysis
	Config File Structure
	Route Statement
	Assign Statement
	Module Statement

	Interface Configuration
	Turning into a Daemon
	Module Initialization
	Routing List Fixing
	Statistics Initialization
	Socket Initialization
	Forking
	dontfork variable is set (not zero)
	dontfork is not set (zero)

	Chapter 2. Main Loop
	receivemsg Function
	Chapter 3. The Server Shutdown
	Chapter 4. Internal Data Structures
	Type str
	Structure hdrfield
	Structure sipuri
	Structure viabody
	Structure ipaddr
	Structure lump
	Structure lumprpl
	Structure msgstart
	Structure sipmsg
	Chapter 5. The Routing Engine
	doaction Function
	Chapter 6. The Message Parser
	Structure of a SIP Message
	The Parser Organization
	The First Line Parser
	The Header Field Name Parser
	The Header Field Body Parsers
	To HF Body Parser
	Structure tobody

	From HF Body Parser
	CSeq HF Body Parser
	Structure cseqbody

	Event HF Body Parser
	Structure eventt

	Expires HF Body Parser
	Structure expbodyt

	Via HF Body Parser
	Contact HF Body Parser
	Digest Body Parser
	Other Functions Of the Digest Body Parser

	Chapter 7. The Module Interface
	Structure srmodule
	Structure moduleexports
	Module Loading
	Module Configuration
	Function modparam
	Function setmodparam
	Function findparamexport

	Finding an Exported Function
	Additional Functions
	Chapter 8. The Database Interface
	Data types
	Type dbcont
	Type dbkeyt
	Type dbtypet
	Type dbvalt
	Type dbrowt
	Type dbrest

	Functions
	binddbmod
	dbinit
	dbclose
	dbquery
	dbfreequery
	dbinsert
	dbdelete
	dbupdate
	dbusetable

	Chapter 9. Basic Modules
	Digest Authentication
	Exported Parameters
	Exported Functions

	Max Forwards
	Exported Parameters
	Exported Functions

	Registrar
	Exported Parameters
	Exported Functions

	RecordRouting
	Exported Parameters
	Exported Functions

	Stateless Replies
	Exported Parameters
	Exported Functions

	Transaction Module
	External Usage of TM
	Exported Parameters
	Exported Functions
	Known Issues

	User Location Module
	Exported Parameters
	Exported Functions

