tm Module

Jiri Kuthan
FhG FOKUS

Edited by
Jiri Kuthan



tm Module
Edited by and Jiri Kuthanand Jiri Kuthan

Copyright © 2003 FhG FOKUS

Revision History
Revision $Revision: 1.1.2.1 $ $Date: 2003/08/05 21:48:08 $



Table of Contents

UL s U Lo OSSR 1
L1 OVEBIVIBW ..ottt ettt e bbbk bk E b e b b E b s bbbt s bbb bt b e st b et e st et et 1
1.2, DEPENUENCIES ..viveiteteieetese ettt sttt ettt b et st b bbbt st bbb bt ee ek eh e b e b e se et st b bt s bkt ne e b et e e b et e se et ebesbebene et 1

1.2, SER IMOUUIES ...ttt ettt ettt ettt nen 1
1.2.2. External Libraries or APPIICALIONS........ccovviiirieirieiee e e 1
1.3, EXPOIEA PATAMELEIS. .. ..euiieiiieteiiet ettt ettt ettt s e s ettt nes 2
G0 I B O I VG (0] (=T =T o TSP 2
132,61 i NV_ti MBI (INEBOEI) .ttt es ettt es bt ne e 2
G Y O I VG (0] (=T =T o SRR SPR 2
1.3.4.del €t e_ti MBI (INTEYEI)...c ittt eb bbb sttt es bbb ene s 3
1.3.5. 1€t _ti MBr LPL (INTEGET).cecuieiteiiieetireet ettt b bbb es bbb en et nn s 3
N O =Y O G A 1= o (] (=T =T o OO OO T STURRPPR 3
1.3.7. 18t _ti MBI L1P3 (INTEIET). e ei ettt ettt ettt ettt sb e et s b eb e b e 3
IR =Y O O 01T e (1] (=T [=1 ) OO TSSO PPRPTRURPRN 4
1.3.9. N0i SY_Ct i MBI (INTBGET) ...ttt ettt ettt bbbt b e b ebe e e 4
I o q o Lo g (=T N g Tod 1o ] T OSSO U USSR 4
R I S o TR Y2 Ao T (T TR o Yo ] ) TSRS 5
R S o= 1 I\ Y (3 PSSR 5
1.4.3.t_0n_Negati VE(r Pl Y_F OUL ) wviiiiiiiieiieiiesiee st stesiee st ste e ste e e s e e e e srassneesneesae e 5
=Y oo 1= T o (o J o Ta= (o3 o (O OSSPSR 6
R ST A 0 1= 1Y A =V o (RO PSSP 6
14.6.t _reply(code, reason_PhraSe) .t see e e sseesseessressseessessressseens 6
R O A Mo To] VT T = 1o (=13 A (O PSSR 7
N T A =LA o= 1= (I A =1 o 1Y () SRS 7
e B A - T BT (=1 (3 SRS 7
1.4.10.t _forward_nonack(i P, POMT) coiiiieiie i ee e sr e sreesteesreesree s 8
1.4.11. EXErnal USAQge OF TIM ..ottt bbbt 8
14,02, KNOWN ISSUBS ...ttt sttt bbbt r et ab et b e sn e ene s 9

2. DEVEIOPEN 'S GUITE ...ttt sttt ettt b et et s et b et e e bt seebere e b e st eeebeneebeneseebeeebeneanas 10
2. L DEIINES ettt e bt R e bR R e bbbtk e bR et ettt ettt e enas 10
2.2, FUNCLIONS ...ttt ettt b e bbb e b bt st b e e e b e et e bt eb ettt eb et b b neenes 10

22 1. register_tnch(ch_type, CB_fUNC) . e 10
2.2.2.10ad_t M * 1 MPOIt _SETUCE UI ) cvveieiiiieeeieeie e steeee e se et see et eneesee e sreeneeneesreenees 10
3. Frequently ASKEd QUESLIONS ..o e 11



List of Examples

1-1. Setfr_ti mer parameter......

1-2.Setfr _i NV_t i MBI PATAMETEN ......iieiieeeiieeee ettt et ste e er et e s e e e seesteeteeseeseesseeseesaesreensensesseeseeseestesneaneensens

1-3. Setwt _t i mer parameter......

1-4. Set del et @_t i MBI PATAMELEL ....ocviieieiteieee ettt e b bbbt r et e bt e b en b ne e

1-5.Setretr_timer1lpl parame
1-6. Setretr_timer1lp2 parame
1-7.Setretr_timer1lp4 parame
1-8. Setretr_timer2 parameter

L[] SO TP P PP PPPPPTPP
L[] SO PO PP PP PP TPPPPTPP
L[] ST PP PP TR PPPPPTPP

1-9. Set NOi SY_Ct i MBI PATAMELEN ......oieiieeeiieeeeeeeeeseste et et st e er e stesteeseeseesteeteeseessesseeseesaesseensensessenseeseensesneaneeneens

1-10.t _rel ay_t o usage ............
1-11.t _rel ay USAge.....ccccuvevneene
1-12.t _on_negati ve usage......
1-13. append_br anch usage......
1-14.t _newtran USage...............
1-15.t _reply usage.......c..ccouc....
1-16.t _| ookup_r equest usage

1-17.8 _ret ranSmmit_F EP] Y USAOR ....ooueiieeiiiet etttk ettt sttt b ettt ke ek eseeebe s heese e shesbe e st e bt sbeabeeseesbeensanneneas

1-18.t _rel ease usage...............
1-19.t _f orwar d_nonack usage



Chapter 1. User’s Guide

1.1. Overview

TM module enables stateful processing of SIP transactions. The main use of stateful logic, which is costly in
terms of memory and CPU, is some services inherently need state. For example, transaction-based accounting
(module acc) needs to process transaction state as opposed to individual messages, and any kinds of forking must
be implemented statefuly. Other use of stateful processing is it trading CPU caused by retransmission processing
for memory. That makes however only sense if CPU consumption per request is huge. For example, if you want
to avoid costly DNS resolution for every retransmission of a request to an unresolveable destination, use stateful
mode. Then, only the initial message burdens server by DNS queries, subsequent retranmissions will be dropped
and will not result in more processes blocked by DNS resolution. The price is more memory consumption and
higher processing latency.

From user’s perspective, there are two major functions : t_relay and t_relay_to. Both setup transaction state,
absorb retransmissions from upstream, generate downstream retransmissions and correlate replies to requests.
t_relay forwards to current URI (be it original request’s URI or a URI changed by some of URI-modifying
functions, such as sethost). t_relay_to forwards to a specific address.

In general, if TM is used, it copies clones of received SIP messages in shared memory. That costs the memory
and also CPU time (memcpys, lookups, shmem locks, etc.) Note that non-TM functions operate over the
received message in private memory, that means that any core operations will have no effect on statefuly
processed messages after creating the transactional state. For example, calling record_route after t_relay is pretty
useless, as the RR is added to privately held message whereas its TM clone is being forwarded.

TM is quite big and uneasy to programm--lot of mutexes, shared memory access, malloc & free, timers--you
really need to be careful when you do anything. To simplify TM programming, there is the instrument of
callbacks. The callback mechanisms allow programmers to register their functions to specific event. See

t _hooks.h for a list of possible events.

Other things programmers may want to know is UAC--it is a very simplictic code which allows you to generate
your own transactions. Particularly useful for things like NOTIFYs or IM gateways. The UAC takes care of all
the transaction machinery: retransmissions , FR timeouts, forking, etc. See t_uac prototype in uac.h for more
details. Who wants to see the transaction result may register for a callback.

1.2. Dependencies

1.2.1. SER Modules

The following modules must be loaded before this module:

+ No dependencies on other SER modules.



Chapter 1. User’'s Guide

1.2.2. External Librariesor Applications

The following libraries or applications must be installed before running SER with this module loaded:

« None.

1.3. Exported Parameters

1.3.1.fr_tinmer (integer)
Timer which hits if no final reply for a request or ACK for a negative INVITE reply arrives (in seconds).

Default valueis 30 seconds.

Example1-1. Set fr _ti mer parameter

nodparam("tnf, "fr_tiner", 10)

1.3.2.fr_inv_tinmer (integer)
Timer which hits if no final reply for an INVITE arrives after a provisional message was received (in seconds).

Default value is 120 seconds.

Example1-2. Set fr _i nv_ti mer parameter

modparan("tni', "fr_inv_timer", 200)

1.3.3.wt _tinmer (integer)

Time for which a transaction stays in memory to absorb delayed messages after it completed; also, when this
timer hits, retransmission of local cancels is stopped (a puristic but complex behviour would be not to enter wait
state until local branches are finished by a final reply or FR timer--we simplified).

Default valueis 5 seconds.



Chapter 1. User’'s Guide

Example 1-3. Set wt _t i mer parameter

nodparan(“tnf, "wt_timer", 10)

1.3.4.del ete_tinmer (integer)
Time after which a to-be-deleted transaction currently ref-ed by a process will be tried to be deleted again.

Default valueis 2 seconds.

Example 1-4. Set del et e_t i mer parameter

nodparanm("tni', "delete_timer", 5)

1.35.retr_tinmer1pl (integer)
Retransmission period.

Default valueis 1 second.

Example 1-5. Set ret r _ti mer 1p1 parameter

nmodparanm("tni, "retr_tinerlpl", 2)

1.3.6.retr_tinmer1p2 (integer)
Retransmission period.

Default valueis2* retr_ti mer 1p1 second.

Example1-6. Set ret r _ti mer 1p2 parameter

nmodparan("tnf', "retr_tinmerip2", 4)



1.3.7.retr _tinmer1p3 (integer)
Retransmission period.

Default valueis4* retr_ti mer 1p1 second.

Example1-7. Setret r _ti mer 1p4 parameter

nmodparan("tni, "retr_tinerlp3", 8)

1.3.8.retr_tinmer2(integer)
Maximum retransmission period.

Default valueis 4 seconds.

Example1-8. Setretr _t i mer 2 parameter

nmodparan("tnf', "retr_tiner2", 8)

1.3.9. noi sy_cti nmer (integer)

Chapter 1. User’'s Guide

If set, on FR timer INVITE transactions will be explicitly cancelled if possible, silently dropped otherwise.
Preferably, it is turned off to allow very long ringing. This behaviour is overridden if a request is forked, or some
functionality explicitly turned it off for a transaction (like acc does to avoid unaccounted transactions due to

expired timer).

Default valueis O (false).

Example 1-9. Set noi sy_ct i mer parameter

modparan("tnf', "noisy_ctimer", 1)



Chapter 1. User’'s Guide

1.4. Exported Functions

141.t relay_to(ip, port)

Relay a message statefuly to a fixed destination. This along with t _r el ay is the function most users want to
use--all other are mostly for programming. Programmers interested in writing TM logic should review how
t_relay is implemented in tm.c and how TM callbacks work.

Meaning of the parameters is as follows:

« ip - IP address where the message should be sent.

« port - Port number.

Example 1-10.t _rel ay_t o usage

t relay _to("1.2.3.4", "5060");

14.2.t _relay()

Relay a message statefuly to destination indicated in current URI. (If the original URI was rewritten by UsrLoc,
RR, strip/prefix, etc., the new URI will be taken). Returns a negative value on failure--you may still want to send
a negative reply upstream statelessly not to leave upstream UAC in lurch.

Example1-11.t rel ay usage

i.%.(!t_relay()) { sl reply_ error(); break; };

1.4.3.t _on_negative(reply_route)

Sets reply routing block, to which control is passed after a transaction completed with a negative result but
before sending a final reply. In the refered block, you can either start a new branch (good for services such as
forward_on_no_reply) or send a final reply on your own (good for example for message silo, which received a
negative reply from upstream and wants to tell upstream “202 | will take care of it”). Note that the set of
command which are useable within reply_routes is strictly limited to rewriting URI, initiating new branches,
logging, and sending stateful replies (t _r epl y). Any other commands may result in unpredictable behaviour
and possible server failure. Note that whenever reply_route is entered, uri is reset to value which it had on
relaying. If it temporarily changed during a reply_route processing, subsequent reply_route will ignore the
changed value and use again the original one.

Meaning of the parameters is as follows:

« reply_route - Reply route block to be called.



Chapter 1. User’'s Guide

Example1-12.t _on_negat i ve usage

route {

t_on_negative("1");
t_relay();
}

reply_route[1] {
revert _uri();
setuser ("voicemil");
append_branch();

See test/onr.cfg for a more complex example of combination of serial with parallel forking.

1.4.4. append_br anch()

Similarly tot _f or k_t o, it extends destination set by a new entry. The difference is that current URI is taken as
new entry.

Example 1-13. append_br anch usage

set _user ("john");
t_fork();

set _user("alice");
t_fork();
t_relay();

145t _newtran()

Creates a new transaction, returns a negative value on error. This is the only way a script can add a new
transaction in an atomic way. Typically, it is used to deploy a UAS.

Example 1-14. t _newt r an usage
if (t_newtran()) {
| og("UAS |l ogic");

t_reply("999","hello");
} else sl _reply_error();

See test/uas.cfg for more examples.



Chapter 1. User’'s Guide

1.4.6.t _reply(code, reason_phrase)
Sends a stateful reply after a transaction has been established. See t _newt r an for usage.

Meaning of the parameters is as follows:

« code- Reply code number.

« reason_phrase - Reason string.

Example1-15.t _repl y usage

t_reply("404", "Not found");

1.4.7.t | ookup_request ()

Checks if a transaction exists. Returns a positive value if so, negative otherwise. Most likely you will not want to
use it, as a typicall application of a looku-up is to introduce a new transaction if none was found. However this is
safely (atomically) done using t _newt r an.

Example 1-16.t _| ookup_r equest usage

i. f . (t_I ookup_request()) {

}s

14.8.t _retransmt_reply()

Retransmits a reply sent previously by UAS transaction.

Example1-17.t _retransmit_repl y usage

t_retransnit_reply();

1.49.t rel ease()

Remove transaction from memory (it will be first put on a wait timer to absorb delayed messages).



Chapter 1. User’'s Guide

Example 1-18.t _r el ease usage

t_release();

1.4.10.t _forward_nonack(ip, port)
mainly for internal usage--forward a non-ACK request statefuly.

Meaning of the parameters is as follows:

« ip - IP address where the message should be sent.

« port - Port number.

Example 1-19.t _f orwar d_nonack usage

t _forward_nonack("1.2.3.4", "5060");

1.4.11. External Usageof TM

There are applications which would like to generate SIP transactions without too big involvement in SIP stack,
transaction management, etc. An example of such an application is sending instant messages from a website. To
address needs of such apps, SER accepts requests for new transactions via fifo pipes too. If you want to enable
this feature, start FIFO server with configuration option.

fifo="/tmp/ser_fifo”

Then, an application can easily launch a new transaction by writing a transaction request to this named pipe. The
request must follow very simple format, which is

‘t_uac_from[<file_name>]\n
<met hod>\n

<sender’s uri >\n

<dst uri>\n

<CR_separ at ed_headers>\n
<body>\n

.\n

\n

(Filename is to where a report will be dumped. ser assumes /tmp as file’s directory.)

Note the the request write must be atomic, otherwise it might get intermixed with writes from other writers. You
can easily use it via Unix command-line tools, see the following example:



Chapter 1. User’'s Guide

[jiri@at jiri]$ cat > /tnp/ser_fifo
1t _uac_from xxx

MESSAGE

si p:sender@nptel.org

sip:mx@ptel .org

header: val ue

f oo: bar

bznk: hj hj k

p_header: p_val ue

body body body
yet body
end of body

or cat test/transaction.fifo > /tmp/ser_fifo

1.4.12. Known | ssues

« We don’t have authentication merging on forking.
- Local ACK/CANCELSs copy’n’pastes Route and ignores deleted Routes.
« 6xx should be delayed.

« Possibly, performance could be improved by not parsing non-INVITEs, as they do not be replied with 100,
and do not result in ACK/CANCELSs, and other things which take parsing. However, we need to rethink
whether we don’t need parsed headers later for something else. Remember, when we now conserver a request
in sh_mem, we can’t apply any pkg_mem operations to it any more. (that might be redesigned too).

« Another performance improvement may be achieved by not parsing CSeq in replies until reply branch
matches branch of an INVITE/CANCEL in transaction table.

« t_replicat e should be done more cleanly--Vias, Routes, etc. should be removed from a message prior to
replicating it (well, does not matter any longer so much as there is a new replication module).

« SNMP support (as hobody cares about SNMP, in particular for TM, I will drop this item soon).



Chapter 2. Developer’s Guide

The module does not provide any sort of API to use in other SER modules.

2.1. Defines

« ACK_TAG enables stricter matching of acknowledgemnts including to-tags. Without it, to-tags are ignored. It
is disabled by default for two reasons:

« It eliminates an unlikely race condition in which transaction’s to-tag is being rewritten by a 200 OK
whereas an ACK is being looked up by to-tag.

- It makes UACs happy who set wrong to-tags.

It should not make a difference, as there may be only one negative reply sent upstream and 200/ACKs are not
matched as they consititute another transaction. It will make no difference at all when the new magic cookie
matching is enabled anyway.

« CANCEL_TAG similarly enables strict matching of CANCELSs including to-tags--act of mercy to UACs, who
screw up the to-tags (however, it still depends on how forgiving the downstream UAS is). Like with
ACK_TAG, all this complex transactions matching goes with RFC3261 (http://www.ietf.org/rfc/rfc3261.txt)’s
magic cookie away anyway.

2.2. Functions

221.register_tncb(cb type, cb_func)
For programmatic use only--register a function to be called back on an event. See t_hooks.h for more details.

Meaning of the parameters is as follows:

« cb_type- Callback type.

« ¢b_func - Callback function.

2.2.2.1 oad_tm(*i nport _structure)
For programmatic use only--import exported TM functions. See the acc module for an example of use.

Meaning of the parameters is as follows:

« import_structure - Pointer to the import structure.

10



Chapter 3. Frequently Asked Questions

1. Where can | find more about SER?
Take a look at http://iptel.org/ser.

2. Where can | post a question about this module?
First at all check if your question was already answered on one of our mailing lists:
« http://mail.iptel.org/mailman/listinfo/serusers

« http://mail.iptel.org/mailman/listinfo/serdev

E-mails regarding any stable version should be sent to <ser user s@ pt el . or g>and e-mail regarding
development versions or CVS snapshots should be send to <ser dev@ pt el . or g>.

If you want to keep the mail private, send it to <ser hel p@ pt el . or g>.

3. How can | report a bug?

Please follow the guidelines provided at: http://iptel.org/ser/bugs

11



